Exposure to high ambient temperature has been shown to impair growth performance and to cause oxidative stress in broilers. This study investigated the hypothesis that supplementation with methionine ( Met ) as DL-Met ( DLM ) more than the National Research Council recommendations improves growth performance and alleviates oxidative stress in broilers exposed to high ambient temperature. One-day-old male Cobb-500 broilers (n = 68) were allotted to 4 groups and phase-fed 3 basal diets during days 1 to 10, 11 to 21, and 22 to 35. One group was kept under thermoneutral temperature conditions and received the basal diets with Met + cysteine ( Cys ) concentrations according to recommendations of NRC. The other 3 groups were kept in a room with an increased ambient temperature from week 3 to 5 and were fed either the basal diet or the basal diets supplemented with 2 levels of DLM in which Met + Cys concentrations exceeded NRC recommendations by around 20% (group DLM1) and 40% (group DLM2), respectively. As expected, the broilers exposed to high ambient temperature showed a lower feed intake, lower body weight gains, a higher feed:gain ratio, and biochemical indications of oxidative stress in comparison to broilers kept under thermoneutral temperature conditions. Supplementation of DLM did not improve the growth performance in broilers exposed to high ambient temperature. However, the broilers supplemented with DLM had increased concentrations of glutathione in liver and breast muscle (groups DLM1 and DLM2), increased concentrations of tocopherols in the liver (group DLM2), and reduced concentrations of 7α-hydroxycholesterol and 7-ketocholesterol in heat-processed thigh muscle (groups DLM1 and DLM2) in comparison to the control group exposed to high ambient temperature. Concentrations of thiobarbituric acid-reactive substances and vitamin C in plasma, liver, and muscle were not different between the 3 groups exposed to heat stress. Nevertheless, the study shows that supplementation of DLM in slight excess of the Met concentration required for maximum growth performance improved the antioxidant status in tissues and reduced the susceptibility of muscle toward oxidation in heat-stressed broilers.
In this study, the hypothesis that supplementation with methionine (Met) as DL-Met (DLM) in excess of the National Research Council (NRC) recommendations improves the antioxidant system in broilers was investigated. Day-old male Cobb-500 broilers (n = 72) were divided into three groups which were fed a control diet or diets supplemented with two levels of DLM in which the concentrations of Met + Cys exceeded the recommendations of NRC by 15–20% (group DLM 1) or 30–40% (group DLM 2), respectively. The three groups of broilers did not show differences in body weight gains, feed intake, and feed conversion ratio. However, broilers of groups DLM 1 and DLM 2 had higher concentrations of glutathione (GSH) in liver and thigh muscle and lower concentrations of cholesterol oxidation products (COPs) in heat-processed thigh muscle than broilers of the control group. Concentrations of several oxidation products of phytosterols in heat-processed thigh muscle were also reduced in groups DLM 1 and DLM 2; however, the concentration of total oxidation products of phytosterols was not different between the three groups. The study shows that DLM supplementation improved the antioxidant status due to an increased formation of GSH and reduced the formation of COPs during heat-processing in thigh muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.