Centrioles and basal bodies fascinate by their spectacular architecture, featuring an arrangement of nine microtubule triplets into an axial symmetry, whose biogenesis relies on yet elusive mechanisms. However, the recent discovery of new tubulins, such as δ-, ɛ-, or η-tubulin, could constitute a breakthrough for deciphering the assembly steps of this unconventional microtubule scaffold. Here, we report the functional analysis in vivo of ɛ-tubulin, based on gene silencing in Paramecium, which demonstrates that this protein, which localizes at the basal bodies, is essential for the assembly and anchorage of the centriolar microtubules.
One main difference between basal bodies and centrioles resides in the expression of their polarity: centrioles display a structural nine-fold radial symmetry, whereas basal bodies express a circumferential polarity, thanks to their asymmetric set of rootlets. The origin of this polarity during organelle duplication still remains under debate: is it intrinsic to the nine-fold structure itself (i.e. the nine microtubular triplets are not equivalent) or imposed by its immediate environment at time of assembly? We have reinvestigated this problem using the Ciliate Paramecium, in which the pattern of basal body duplication is well known. In this cell, all basal bodies produced within ciliary rows appear immediately anterior to parental ones. Observations on cells fixed with the tannic acid protocol suggest that, to be competent for basal body assembly, parental basal bodies have to be individually associated with a complete set of rootlets (monokinetid structure). During pro-basal body assembly, full microtubular triplets were detected according to a random circumferential sequence; during the whole process, the new basal body and its associated rootlets maintained structural relations with the parental monokinetid structure by way of specific links. These results strongly suggest that basal body and associated rootlets (kinetid) polarity is driven by its immediate environment and provide a basis for the structural heredity property observed by Sonneborn some decades ago.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.