Background PiT1 (or SLC20a1) encodes a widely expressed plasma membrane protein functioning as a high-affinity Na+-phosphate (Pi) cotransporter. As such, PiT1 is often considered as a ubiquitous supplier of Pi for cellular needs regardless of the lack of experimental data. Although the importance of PiT1 in mineralizing processes have been demonstrated in vitro in osteoblasts, chondrocytes and vascular smooth muscle cells, in vivo evidence is missing.Methodology/Principal FindingsTo determine the in vivo function of PiT1, we generated an allelic series of PiT1 mutations in mice by combination of wild-type, hypomorphic and null PiT1 alleles expressing from 100% to 0% of PiT1. In this report we show that complete deletion of PiT1 results in embryonic lethality at E12.5. PiT1-deficient embryos display severely hypoplastic fetal livers and subsequent reduced hematopoiesis resulting in embryonic death from anemia. We show that the anemia is not due to placental, yolk sac or vascular defects and that hematopoietic progenitors have no cell-autonomous defects in proliferation and differentiation. In contrast, mutant fetal livers display decreased proliferation and massive apoptosis. Animals carrying two copies of hypomorphic PiT1 alleles (resulting in 15% PiT1 expression comparing to wild-type animals) survive at birth but are growth-retarded and anemic. The combination of both hypomorphic and null alleles in heterozygous compounds results in late embryonic lethality (E14.5–E16.5) with phenotypic features intermediate between null and hypomorphic mice. In the three mouse lines generated we could not evidence defects in early skeleton formation.Conclusion/SignificanceThis work is the first to illustrate a specific in vivo role for PiT1 by uncovering it as being a critical gene for normal developmental liver growth.
High plasma fibroblast growth factor-23 (FGF23) concentration predicts the risk of death and poor outcomes in patients with chronic kidney disease or chronic heart failure. We checked if FGF23 concentration could be modified in patients with end stage liver disease (ESLD) and predict mortality. We measured plasma FGF23 in 200 patients with ESLD registered on a liver transplant waiting list between January 2005 and October 2008. We found that median plasma FGF23 concentration was above normal values in 63% of the patients. Increased FGF23 concentration was not explained by its classical determinants: hyperphosphataemia, increased calcitriol concentration or decreased renal function. FGF23 concentration correlated with the MELD score, serum sodium concentration, and GFR. Forty-six patients died before being transplanted and 135 underwent liver transplantation. We analyzed the prognostic value of FGF23 levels. Mortality was significantly associated with FGF23 levels, the MELD score, serum sodium concentration and glomerular filtration rate. On multivariate analyses only FGF23 concentration was associated with mortality. FGF23 levels were independent of the cause of the liver disease. To determine if the damaged liver can produce FGF23 we measured plasma FGF23 concentration and liver FGF23 mRNA expression in control and diethyl-nitrosamine (DEN)-treated mice. FGF23 plasma levels increased with the apparition of liver lesions in DEN-treated mice and that FGF23 mRNA expression, which was undetectable in the liver of control mice, markedly increased with the development of liver lesions. The correlation between FGF23 plasma concentration and FGF23 mRNA expression in DEN-treated mice suggests that FGF23 production by the liver accounts for the increased plasma FGF23 concentration. In conclusion chronic liver lesions can induce expression of FGF23 mRNA leading to increased FGF23 concentration, which is associated with a higher mortality in patients on a liver-transplant waiting list. In these patients FGF23 concentration was the best predictor of mortality.
The DNA double-strand breaks (DSBs) are considered to be the most relevant lesions for the deleterious effects of ionizing radiation exposure. The discovery that the induction of DSBs is rapidly followed by the phosphorylation of H2AX histone at Ser-139, favoring repair protein recruitment or access, opens the possibility for a wide range of research. This phosphorylated histone, named gamma-H2AX, has been shown to form foci in interphase nuclei as well as megabase chromatin domains surrounding the DNA lesion on chromosomes. Using detection of gamma-H2AX on germ cell mitotic chromosomes 2 h after gamma-irradiation, we studied radiation-induced DSBs during the G(2)/M phase of the cell cycle. We show that 1) non-irradiated neonatal germ cells express gamma-H2AX with variable patterns at metaphase, 2) gamma-irradiation induces foci whose number increases in a dose-dependent manner, 3) some foci correspond to visible chromatid breaks or exchanges, 4) sticky chromosomes characterizing cell radiation exposure during mitosis are a consequence of DSBs, and 5) gamma-H2AX remains localized at the sites of the lesions even after end-joining has taken place. This suggests that completion of DSB repair does not necessarily imply disappearance of gamma-H2AX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.