SummaryThe biopolymer sporopollenin present in the spore/pollen walls of all land plants is regarded as one of the most recalcitrant biomacromolecules (biopolymers), providing protection against a range of abiotic stresses. This long-term stability is demonstrated by the near-ubiquitous presence of pollen and spores in the fossil record with spores providing the first evidence for the colonization of the land.Here, we report for the first time chemical analyses of geologically unaltered sporopollenin from Pennsylvanian (c. 310 million yr before present (MyBP)) cave deposits.Our data show that Pennsylvanian Lycophyta megaspore sporopollenin has a strong chemical resemblance to extant relatives and indicates that a co-polymer model of sporopollenin formation is the most likely configuration.Broader comparison indicates that extant sporopollenin structure is similar across widely spaced phylogenetic groups and suggests land plant sporopollenin structure has remained stable since embryophytes invaded land.
SUMMARYCore supported study of the heterogeneous Ungani dolomite reservoir architecture is driving development drilling and upgrades to field resource estimates. Vuggy connected and macro non-connected pore space was directly measured over a 70m continuous core using 3D structural analysis of CT-scans. Plug density measurements indicate non-connected or sub-140 micron resolution contribution of around 1% to 2.5% (pu) for the tight matrix, but all remaining porosity potentially contributes to oil production. The high resolution core porosity data is vertically repositioned and upscaled to calibrate neutron-density and sonic petrophysically derived porosities which are inadequate to resolve productive zones using conventional reservoir cut-offs. Conditioned resistivity image data correlated exceptionally with directly measured connected porosities. Reservoir properties were extrapolated to all wells across the Ungani field giving field net/gross estimates of up to 63% and porosities over 30% pu in some vuggy and brecciaed zones. The heterogeneity and prolific nature of the uppermost 17m of reservoir had not been previously recognised due to poor log data coverage and access at the casing points. Recent re-analysis of this section at Ungani-3 with Chemostrat ICP-OES-MS analysis of ditch cuttings was instrumental in proposing additional drilling to re-target this zone. Mineralogy analysis is used to calculate rock grain densities and help calibrate neutron-density derived porosity logs over the Ungani field. Up-scaled core porosity correlates well with density and sonic porosity logs. Resistivity logs adjusted for minerology can also be used to predict porosity and support the use of resistivity image logs to identify vuggy zones and estimate porosity at a higher resolution than conventional logging tools. A field static model was populated with three facies distributed over vertical zones according to the distribution encountered in the core porosity analysis and well logs, and iteratively matched to the dynamic pressure data and field production history which exhibits field scale multi-Darcy horizontal permeability and protection from vertical water cut. Further drilling and downhole artificial lift is planned to extend field production rates to 3000 bbls/day. Increased confidence in this regionally developed reservoir is supporting further exploration of undrilled prospects in this immature and under-explored trend
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.