The cytopathic effect of HIV-1 and HIV-2 in CD4+ lymphocytes has been shown to be associated with apoptosis or programmed cell death. Using different experimental conditions, we demonstrate here that apoptosis is triggered by cell membrane expression of the mature HIV envelope glycoproteins, gp120-gp41 complex, and their interaction with CD4 receptor molecules. Viral entry alone did not induce apoptosis but virus replication was required in order to produce the gp120-gp41 complex. Indeed, expression of the HIV env gene alone in the CD4+ T cell line (CEM) was sufficient for the induction of apoptosis. In general, syncytium formation and apoptosis induction were closely associated as both events require functional envelope glycoproteins and CD4 molecules. Nevertheless, apoptosis but not syncytium formation was suppressed by a monoclonal antibody against CD4 that does not affect gp120 binding. Furthermore, single-cell killing by apoptosis was observed in infected cell cultures treated with a monoclonal antibody against gp41, which completely abolishes the formation of syncytia. These results indicate that apoptosis is not the consequence of toxic effects induced by the formation of syncytia but is triggered by the HIV envelope glycoproteins. Therefore, cell death during HIV infection in CD4+ lymphocyte cultures is due to a specific event triggered by the gp120-gp41 heterodimer complex programming death in metabolically active cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.