The H19 gene produces a non-coding RNA, which is abundantly expressed during embryonic development and down-regulated after birth. Although this gene was discovered over 20 years ago, its function has remained unclear. Only recently a role was identified for the non-coding RNA and/or its microRNA partner, first as a tumour suppressor gene in mice, then as a trans-regulator of a group of co-expressed genes belonging to the imprinted gene network that is likely to control foetal and early postnatal growth in mice. The mechanisms underlying this transcriptional or post-transcriptional regulation remain to be discovered, perhaps by identifying the protein partners of the full-length H19 RNA or the targets of the microRNA. This first in vivo evidence of a functional role for the H19 locus provides new insights into how genomic imprinting helps to control embryonic growth.
The imprinted H19 gene produces a non-coding RNA of unknown function. Mice lacking H19 show an overgrowth phenotype, due to a cis effect of the H19 locus on the adjacent Igf2 gene. To explore the function of the RNA itself, we produced transgenic mice overexpressing H19. We observed postnatal growth reduction in two independent transgenic lines and detected a decrease of Igf2 expression in embryos. An extensive analysis of several other genes from the newly described imprinted gene network (IGN) was performed in both loss-and gain-of-function animals. We found that H19 deletion leads to the upregulation of several genes of the IGN. This overexpression is restored to the wild-type level by transgenic expression of H19. We therefore propose that the H19 gene participates as a trans regulator in the fine-tuning of this IGN in the mouse embryo. This is the first in vivo evidence of a functional role for the H19 RNA. Our results also bring further experimental evidence for the existence of the IGN and open new perspectives in the comprehension of the role of genomic imprinting in embryonic growth and in human imprinting pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.