Food webs in the rhithral zone rely mainly on allochthonous carbon from the riparian vegetation. However, autochthonous carbon might be more important in open canopy streams. In streams, most of the microbial activity occurs in biofilms, associated with the streambed. We followed the autochthonous carbon transfer toward bacteria and grazing protozoa within a stream biofilm food web. Biofilms that developed in a second-order stream (Thuringia, Germany) were incubated in flow channels under climate-controlled conditions. Six-week-old biofilms received either 13 C-or 12 C-labeled CO 2 , and uptake into phospholipid fatty acids was followed. The dissolved inorganic carbon of the flow channel water became immediately labeled. In biofilms grown under 8-h light/16-h dark conditions, more than 50% of the labeled carbon was incorporated in biofilm algae, mainly filamentous cyanobacteria, pennate diatoms, and nonfilamentous green algae. A mean of 29% of the labeled carbon reached protozoan grazer. The testate amoeba Pseudodifflugia horrida was highly abundant in biofilms and seemed to be the most important grazer on biofilm bacteria and algae. Hence, stream biofilms dominated by cyanobacteria and algae seem to play an important role in the uptake of CO 2 and transfer of autochthonous carbon through the microbial food web.
Weathering of ancient organic matter contributes significantly to biogeochemical carbon cycles over geological times. The principle role of microorganisms in this process is well recognized. However, information is lacking on the contribution of individual groups of microorganisms and on the effect of labile carbon sources to the degradation process. Therefore, we investigated the contribution of fungi, Gram-positive and Gram-negative bacteria in the degradation process using a column experiment. Investigations were performed on low metamorphic black slates. All columns contained freshly crushed, sieved (0.63-2 mm), not autoclaved black slates. Two columns were inoculated with the lignite-degrading fungus Schizophyllum commune and received a culture medium containing 13 C labeled glucose, two columns received only this culture medium and two control columns received only water.The total mass balance was calculated from all carbon added to the slate and the CO 2 and DOC losses. Phospholipid fatty acids (PLFA) were extracted to investigate microbial communities. We used both the compound specific 14 C and 13 C signal of the PLFA to quantify carbon uptake from black slates and the glucose of the culture medium, respectively.The total carbon loss in these columns exceeded the amount of added carbon by approximately 60%, indicating that black slate carbon has been used. PLFA associated with Gram-positive bacteria dominated the indigenous community and took up 22% of carbon from black slate carbon, whereas PLFA of Gram-negative bacteria used only 8% of carbon from the slates. PLFA of Gram-negative bacteria and fungi were both mostly activated by the glucose addition. The added Schizophyllum did not establish well in the columns and was overgrown by the indigenous microbial community. Our results suggest that especially Gram-positive bacteria are able to live on and degrade black slate material. They also benefit from easy degradable carbon from the nutrient broth. In natural environments priming due to root exudates might consequently enhance weathering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.