Advances in power electronics, increasing share of renewables in the energy system and e-mobility cause an increase of disturbances in the frequency range 2-150 kHz, also known as supraharmonics. A rigorous, credible and agreed measurement framework is essential to evaluate electromagnetic compatibility (EMC) in this frequency range. While a normative method exists for measuring equipment emission in the laboratory, no normative method exists yet for the measurement of supraharmonic disturbance levels in the grid. The aim of this research is a detailed comparison of potential measurement methods derived from existing standards IEC 61000-4-7, IEC 61000-4-30, CISPR 16-1-1 and a critical assessment of their suitability for disturbance measurements in grid applications. Based on a comprehensive set of synthetic signals and real measurements from laboratory and field, this article studies the ability of the methods to assess the typical characteristics of supraharmonic emission with relevance to EMC coordination. It presents the benefits and drawbacks of the existing measurement methods and discusses the suitability of possible modifications for grid compliance assessment. The results and recommendations intend to be an input for the present activities of IEC SC 77A WG 9 to define a normative method for the measurement of supraharmonic disturbance levels to be included in the next edition of IEC 61000-4-30.
Researchers and standard-setting organizations recently have paid much attention to power quality disturbances in the frequency range between 2-150 kHz, which is also referred to as supraharmonics. The majority of the commercial PQ monitors cannot access this high frequency without hardware and firmware update for more complex processor and Analog to Digital Converter. The central focus of this work is to present a technique to access the supraharmonics without significantly modification of the hardware and software of the PQ analyzers. The technique is based on analog filter banks and subsampling approach. The use of subsampling technique allows the reduction of the number of samples processed by the Fast Fourier Transform FFT. Through a systematic analysis, it was verified that the proposed methodology reduces computational complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.