The unique vulnerability of the olfactory system to Alzheimer’s disease (AD) provides a quintessential translational tool for understanding mechanisms of synaptic dysfunction and pathological progression in the disease. Using the Tg2576 mouse model of β-amyloidosis, we show aberrant, hyperactive olfactory network activity begins early in life, prior to detectable behavioral impairments or comparable hippocampal dysfunction and at a time when Aβ deposition is restricted to the olfactory bulb (OB). Hyperactive odor-evoked activity in the piriform cortex (PCX) and increased OB-PCX functional connectivity emerged at a time coinciding with olfactory behavior impairments. This hyperactive activity persisted until later-life when the network converted to a hyporesponsive state. This conversion was Aβ-dependent, as liver-x-receptor agonist treatment to promote Aβ degradation, rescued the hyporesponsive state and olfactory behavior. These data lend evidence to a novel working model of olfactory dysfunction in AD and, complimentary to other recent works, suggest that disease-relevant network dysfunction is highly dynamic and region specific, yet with lasting effects on cognition and behavior.
Orienting responses are physiological and active behavioral reactions evoked by novel stimulus perception and are critical for survival. We explored whether odor orienting responses are impacted throughout both adulthood and normal and pathological aging in mice. Novel odor investigation (including duration and bout numbers) and its subsequent habituation as assayed in the odor habituation task were preserved in adult C57BL/6J mice up to 12mo of age with <6% variability between age groups in investigation time. Separately, using whole-body plethysmography we found that both spontaneous respiration and odor-evoked sniffing behaviors were strikingly preserved in wildtype (WT) mice up to 26mo of age. In contrast, mice accumulating amyloid-β protein in the brain by means of overexpressing mutations in the human amyloid precursor protein gene (APP) showed preserved spontaneous respiration up to 12mo, but starting at 14mo showed significant differences from WT. Similar to WTs, odor-evoked sniffing was not impacted in APP mice up to 26mo. These results show that odor-orienting responses are minimally impacted throughout aging in mice, and suggest that the olfactomotor network is mostly spared of insults due to aging.
The false-suffocation hypothesis of panic disorder (Klein, 1993) suggested δ-opioid receptors as a possible source of the respiratory dysfunction manifested in panic attacks occurring in panic disorder (Preter and Klein, 2008). This study sought to determine if a lack of δ-opioid receptors in a mouse model affects respiratory response to elevated CO2, and whether the response is modulated by benzodiazepines, which are widely used to treat panic disorder. In a whole-body plethysmograph, respiratory responses to 5% CO2 were compared between δ-opioid receptor knockout mice and wild-type mice after saline, diazepam (1 mg/kg), and alprazolam (0.3 mg/kg) injection. The results show that lack of δ-opioid receptors does not affect normal response to elevated CO2, but does prevent benzodiazepines from modulating that response. Thus, in the presence of benzodiazepine agonists, respiratory responses to elevated CO2 were enhanced in δ-opioid receptor knockout mice compared to wild-type mice. This suggests an interplay between benzodiazepine receptors and δ-opioid receptors in regulating the respiratory effects of elevated CO2, which might be related to CO2 induced panic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.