The ability of subunit C of eukaryotic V-ATPases to bind ADP and ATP is demonstrated by photoaffinity labeling and fluorescence correlation spectroscopy (FCS). Quantitation of the photoaffinity and the FCS data indicate that the ATP-analogues bind more weakly to subunit C than the ADP-analogues. Site-directed mutagenesis and N-terminal sequencing of subunit C from Arabidopsis (VHA-C) and yeast (Vma5p) have been used to map the C-terminal region of subunit C as the nucleotide-binding site. Tryptophan fluorescence quenching and decreased susceptibility to tryptic digestion of subunit C after binding of different nucleotides provides evidence for structural changes in this subunit caused by nucleotide-binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.