Many cities aim to increase urban forest cover to benefit residents through the provision of ecosystem services and to promote biodiversity. As a complement to traditional forest plantings, we address opportunities associated with “emerging urban forests” (i.e., spontaneously developing forests in cities) for urban biodiversity conservation. We quantified the area of successional forests and analyzed the species richness of native and alien plants and of invertebrates (carabid beetles, spiders) in emerging forests dominated by alien or native trees, including Robinia pseudoacacia, Acer platanoides, and Betula pendula. Emerging urban forests were revealed as shared habitats of native and alien species. Native species richness was not profoundly affected by the alien (co-)dominance of the canopy. Instead, native and alien plant species richnesses were positively related. Numbers of endangered plants and invertebrates did not differ between native- and alien-dominated forest patches. Patterns of tree regeneration indicate different successional trajectories for novel forest types. We conclude that these forests (i) provide habitats for native and alien species, including some endangered species, (ii) allow city dwellers to experience wild urban nature, and (iii) support arguments for adapting forests to dynamic urban environments. Integrating emerging urban forests into the urban green infrastructure is a promising pathway to sustainable cities and can complement traditional restoration or greening approaches.
Urban biodiversity conservation requires an understanding of how urbanization modulates biodiversity patterns and the associated ecosystem services. While important advances have been made in the conceptual development of urban biodiversity research over the last decades, challenges remain in understanding the interactions between different groups of taxa and the spatiotemporal complexity of urbanization processes. The CityScapeLab Berlin is a novel experimental research platform that allows the testing of theories on how urbanization affects biodiversity patterns and biotic interactions in general and the responses of species of conservation interest in particular. We chose dry grassland patches as the backbone of the research platform because dry grasslands are common in many urban regions, extend over a wide urbanization gradient, and usually harbor diverse and self-assembled communities. Focusing on a standardized type of model ecosystem allowed the urbanization effects on biodiversity to be unraveled from effects that would otherwise be masked by habitat- and land-use effects. The CityScapeLab combines different types of spatiotemporal data on (i) various groups of taxa from different trophic levels, (ii) environmental parameters on different spatial scales, and (iii) on land-use history. This allows for the unraveling of the effects of current and historical urban conditions on urban biodiversity patterns and the related ecological functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.