Background: The evaluation of treatment efficacy for individuals with fragile X syndrome (FXS) or intellectual disability (ID) more generally has been hampered by the lack of adequate outcome measures. We evaluated expressive language sampling (ELS) as a procedure for generating outcome measures for treatment research in FXS. We addressed: (a) feasibility, (b) practice effects over two administrations, (c) test-retest reliability over the repeated administrations, and (d) construct validity. We addressed these issues for the full sample as well as for subgroups defined by age, IQ, and ASD status. Methods: Participants were 106 individuals with FXS between ages 6 and 23 years who had IQs within the range of intellectual disability (IQ < 70). ELS procedures for collecting samples in conversation and narration were followed and analyzed separately. Five measures were derived from transcripts segmented into C-units (i.e., an independent clause and its modifiers): number of C-units per minute (talkativeness), number of different word roots (vocabulary), C-unit length in morphemes (syntax), percentage of C-units containing dysfluency (utterance planning), and percentage of C-units that were fully or partly unintelligible (articulatory quality). ELS procedures were administered twice at 4-week intervals for each participant. Standardized tests and informant reports were administered and provided measures for evaluating construct validity of ELS measures.
Fragile X syndrome (FXS), an inherited intellectual disability often associated with autism, is caused by the loss of expression of the fragile X mental retardation protein. Tremendous progress in basic, preclinical, and translational clinical research has elucidated a variety of molecular-, cellular-, and system-level defects in FXS. This has led to the development of several promising therapeutic strategies, some of which have been tested in larger-scale controlled clinical trials. Here, we will summarize recent advances in understanding molecular functions of fragile X mental retardation protein beyond the well-known role as an mRNAbinding protein, and will describe current developments and emerging limitations in the use of the FXS mouse model as a preclinical tool to identify therapeutic targets. We will review the results of recent clinical trials conducted in FXS that were based on some of the preclinical findings, and discuss how the observed outcomes and obstacles will inform future therapy development in FXS and other autism spectrum disorders.Key Words Fragile X syndrome . FMRP . mRNA translation . clinical trials . biomarkers . language development Fragile X syndrome (FXS) is one of the first single gene disorders manifesting features of autism spectrum disorder (ASD) in which extensive study of the neurobiology and synaptic mechanisms of disease in cellular and animal models has been possible. The enormous progress in basic and preclinical and clinical translational work in FXS in the last several decades has allowed FXS to emerge as an important model to illustrate successes and hurdles in the development of future targeted treatments for autism and related developmental disorders. FXS is the most common known genetic cause of intellectual disability and ASD, with an estimated frequency of about 1 in 4000-5000 [1]. The disorder affects all ethnic groups worldwide. Genetics and Phenotype of FXSFXS is one of the fragile X-associated disorders (FXDs), all of which arise from a trinucleotide repeat (CGG) expansion mutation in the promoter region of FMR1. The CGG sequence is transcribed into the 5' untranslated region of FMR1 mRNA and thus length of the repeat sequence does not affect the sequence of the protein product of FMR1 [fragile X mental retardation protein (FMRP)] [2]. Small expansions in the gene (55-200 CGG repeats), termed the Bpremutation^, occur in about 1 in 430-468 males and 1 in 151-209 females in the USA [3,4], and is associated with risk for fragile X-associated tremor/ataxia syndrome and fragile X-associated primary ovarian insufficiency. Although the premutation is transcribed and translated to give FMRP, toxicity in fragile X-associated tremor/ataxia
The increasing incidence of bloodstream infections including sepsis is a major challenge in intensive care units worldwide. However, current diagnostics for pathogen identification mainly depend on culture-and molecular-based approaches, which are not satisfactory regarding specificity, sensitivity, and time to diagnosis. Herein, we established a complete diagnostic workflow for real-time highthroughput sequencing of cell-free DNA from plasma based on nanopore sequencing for the detection of the causative agents, which was applied to the analyses of eight samples from four septic patients and three healthy controls, and subsequently validated against standard next-generation sequencing results. By optimization of library preparation protocols for short fragments with low input amounts, a 3.5-fold increase in sequencing throughput could be achieved. With tailored bioinformatics workflows, all eight septic patient samples were found to be positive for relevant pathogens. When considering time to diagnosis, pathogens were identified within minutes after start of sequencing. Moreover, an extrapolation of real-time sequencing performance on a cohort of 239 septic patient samples revealed that more than 90% of pathogen hits would have also been detected using the optimized MinION workflow. Reliable identification of pathogens based on circulating cell-free DNA sequencing using optimized workflows and real-time nanopore-based sequencing can be accomplished within 5 to 6 hours following blood draw. Therefore, this approach might provide therapy-relevant results in a clinically critical timeframe. (J Mol Diagn 2020, 22: 405e418; https://doi.Bloodstream infections, in particular sepsis, represent one of the main causes of death, with a mortality rate of up to 30% to 50% in intensive care units worldwidedand this trend is rising. 1e4 To provide an appropriate treatment for sepsis patients, the major challenge is not only the timely diagnosis of sepsis, but also the identification of the sepsis-causing agents. 4 A rapid detection of the causative pathogens enables early targeted antimicrobial therapy, which significantly increases survival rate, prevents subsequent complications, and reduces drugrelated side effects as well as medical expenses. 4e8 Despite extensive medical research in the field of sepsis, there are to date no fully satisfactory diagnostic approaches for a rapid, reliable, and sensitive identification of pathogens in the bloodstream. 9e12 Therefore, time-consuming, error-and contamination-prone blood cultures (BC) are still considered the standard of care for sepsis diagnostics, frequently leading to an inappropriate and delayed targeted therapy. 11,13
Brown adipose tissue (BAT) dissipates energy1,2 and promotes cardiometabolic health3. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centred obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic programme in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate–protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced ‘browning’ of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacological inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, respectively. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a ‘replace me’ signalling function that regulates thermogenic fat and counteracts obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.