Food animal production systems have become more consolidated and integrated, producing large, concentrated animal populations and significant amounts of fecal waste. Increasing use of manure and litter as a more “natural” and affordable source of fertilizer may be contributing to contamination of fruits and vegetables with foodborne pathogens. In addition, human and animal manure have been identified as a significant source of antibiotic resistance genes thereby serving as a disseminator of resistance to soil and waterways. Therefore, identifying methods to remediate human and animal waste is critical in developing strategies to improve food safety and minimize the dissemination of antibiotic resistant bacteria. In this study, we sought to determine whether withdrawing antibiotic growth promoters or using alternatives to antibiotics would reduce the abundance of antibiotic resistance genes or prevalence of pathogens in poultry litter. Terminal restriction fragment length polymorphism (T-RFLP) paired with high throughput sequencing was used to evaluate the bacterial community composition of litter from broiler chickens that were treated with streptogramin growth-promoting antibiotics, probiotics, or prebiotics. The prevalence of resistance genes and pathogens was determined from sequencing results or PCR screens of litter community DNA. Streptogramin antibiotic usage did not elicit statistically significant differences in Shannon diversity indices or correlation coefficients among the flocks. However, T-RFLP revealed that there were inter-farm differences in the litter composition that was independent of antibiotic usage. The litter from all farms, regardless of antibiotic usage, contained streptogramin resistance genes (vatA, vatB, and vatE), macrolide-lincosamide-streptogramin B resistance genes (ermA and ermB), the tetracycline resistance gene tetM and class 1 integrons. There was inter-farm variability in the distribution of vatA and vatE with no statistically significant differences with regards to usage. Bacterial diversity was higher in litter when probiotics or prebiotics were administered to flocks but as the litter aged, diversity decreased. No statistically signficant differences were detected in the abundance of class 1 integrons where 3%–5% of the community was estimated to harbor a copy. Abundance of pathogenic Clostridium species increased in aging litter despite the treatment while the abundance of tetracycline-resistant coliforms was unaffected by treatment. However some treatments decreased the prevalence of Salmonella. These findings suggest that withdrawing antibiotics or administering alternatives to antibiotics can change the litter bacterial community and reduce the prevalence of some pathogenic bacteria, but may not immediately impact the prevalence of antibiotic resistance.
The rise in Salmonella resistance to cephalosporins and fluoroquinolones has become a significant threat to public health. At issue, is whether agricultural use of antimicrobials is selecting antibiotic resistance in Salmonella and the degree to which large antimicrobial resistance gene reservoirs, present in animal manures, contribute to this resistance. Two in vivo studies were performed to address these questions. In the first study, chickens were administered Salmonella and commensals, including an Escherichia coli strain with a mobile, ceftiofur-resistance plasmid, in order to determine how antibiotic administration impacted resistance in E. coli and Salmonella. All antibiotics administered to chickens increased streptomycin resistance in E. coli. However, only ceftiofur administration increased resistance in Salmonella and specifically to extended-spectrum β-lactams and cephalosporins (ESBL). There was no significant increase in ESBL-resistant Salmonella in chickens administered a ceftiofur-resistance plasmid donor. In the second study, chickens were administered two different isolates of S. enterica Typhimurium and a chicken resistome to serve as a gene donor. Birds were subsequently administered chlortetracycline or streptomycin. Antimicrobial administration significantly altered aminoglycoside and tetracycline resistance in the Enterobacteriaceae population. However, there was no significant increase in antimicrobial resistant Salmonella. Administration of a chicken resistome had no significant impact on prevalence of resistance in Enterobacteriaceae populations, including Salmonella. Evident, from both studies, was that these treatments had minimal effect on increasing the prevalence of resistance in Salmonella, suggesting that other factors may be more important in dissemination of antimicrobial resistant Salmonella in chickens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.