Molecular subtyping of breast cancer may provide additional prognostic information regarding patient outcome. However, its clinical significance remains to be established. In this study, the main aims were to discover whether reclassification of breast cancer into molecular subtypes provides more precise information regarding outcome compared to conventional histopathological grading and to study breast cancer-specific survival in the different molecular subtypes. Cases of breast cancer occurring in a cohort of women born between 1886 and 1928 with long-term follow-up were included in the study. Tissue microarrays were constructed from archival formalin-fixed, paraffin-embedded tissue from 909 cases. Using immunohistochemistry and in situ hybridisation as surrogates for gene expression analyses, all cases were reclassified into the following molecular subtypes: Luminal A; Luminal B (HER2−); Luminal B (HER2+); HER2 subtype; Basal phenotype; and five negative phenotype. Kaplan–Meier survival curves and Cox proportional hazards models were used in the analyses. During the first 5 years after diagnosis, there were significant differences in prognosis according to molecular subtypes with the best survival for the Luminal A subtype and the worst for HER2 and five negative phenotype. In this historic cohort of women with breast cancer, differences in breast cancer-specific survival according to subtype occur almost exclusively amongst the histopathological grade 2 tumours. From 5 years after time of diagnosis until the end of follow-up, there appears to be no difference in survival according to molecular subtype or histopathological grade.
Exemestane modestly enhanced bone loss from the femoral neck without significant influence on lumbar bone loss. Except for a 6% to 9% drop in plasma high-density lipoprotein cholesterol, no major effects on serum lipids, coagulation factors, or homocysteine were recorded. Bone mineral density should be assessed according to the US Preventive Services Task Force guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.