Background In recent years, animal welfare and health has become more and more important in pig breeding. So far, numerous parameters have been considered as important biomarkers, especially in the immune reaction and inflammation. Previous studies have shown moderate to high heritabilities in most of these traits. However, the genetic background of health and robustness of pigs needs to be extensively clarified. The objective of this study was to identify genomic regions with a biological relevance for the immunocompetence of piglets. Genome-wide Association Studies (GWAS) in 535 Landrace (LR) and 461 Large White (LW) piglets were performed, investigating 20 immune relevant traits. Besides the health indicators of the complete and differential blood count, eight different cytokines and haptoglobin were recorded in all piglets and their biological dams to capture mediating processes and acute phase reactions. Additionally, all animals were genotyped using the Illumina PorcineSNP60v2 BeadChip. Results In summary, GWAS detected 25 genome-wide and 452 chromosome-wide significant SNPs associated with 17 immune relevant traits in the two maternal pig lines LR and LW. Only small differences were observed considering the maternal immune records as covariate within the statistical model. Furthermore, the study identified across- and within-breed differences as well as relevant candidate genes. In LR more significant associations and related candidate genes were detected, compared with LW. The results detected in LR and LW are partly in accordance with previously identified quantitative trait loci (QTL) regions. In addition, promising novel genomic regions were identified which might be of interest for further detailed analysis. Especially putative pleiotropic regions on SSC5, SSC12, SSC15, SSC16 and SSC17 are of major interest with regard to the interacting structure of the immune system. The comparison with already identified QTL gives indications on interactions with traits affecting piglet survival and also production traits. Conclusion In conclusion, results suggest a polygenic and breed-specific background of immune relevant traits. The current study provides knowledge about regions with biological relevance for health and immune traits. Identified markers and putative pleiotropic regions provide first indications in the context of balancing a breeding-based modification of the porcine immune system.
Improving the immunocompetence towards pathogens represents a desirable objective of breeding strategies to increase resilience. However, the immune system is complex and the genetic foundation of the underlying components is not yet clarified. In the present study, we focused on 22 blood parameters of 1,144 Landrace (LR) and Large White (LW) piglets at the age of 6–7 weeks. The immune profiles covered immune cells, red blood cell characteristics and cytokines. Genetic parameters based on pedigree information along with possible environmental effects were estimated. Litter effects play an important role in the expression of immune parameters of their young progenies. Hence, litter impacts on the piglet's immune profile including the immune parameters of the dam itself were investigated by different models. To incorporate the complexity of the immune network, the data were further investigated with a principal component analysis. Immune traits showed low to high breed‐specific heritabilities (h2). Strong positive rg were estimated among red blood cell characteristics (0.77–0.99) and among cytokines (0.48–0.99). Neutrophils and lymphocytes illustrated a high negative rg (−0.96 to −0.98). The litter impact on piglet's immunity was examined and strengthened already observed breed differences. In LR, h2 (0.22–0.15) and litter effect (c2) (0.52–0.44) for IFN‐γ decreased after statistical consideration of maternal impact. In LW, a decrease in h2 (0.32–0.18) for IFN‐γ and an increase in c2 (0.54–0.56) were observed. Here, sufficient correlations were detected within various immune traits and functional biological networks of principal components. Most immune traits are heritable and are promising to cover global breed‐specific immunocompetence in pigs. The analysis of immune traits has to be extended in order to find an optimal range and to characterize relationships between immunity and performance to gain an improved immune system without accidental losses in productivity.
Mixing of unfamiliar pigs is a standard management procedure in commercial pig production and is often associated with a period of intense and physically damaging aggression. Aggression is considered a problem for animal welfare and production. The objective of the present paper was to investigate the genetic background of aggressive behavior traits at mixing of unfamiliar gilts under 2 different housing conditions. Therefore, a total of 543 purebred Pietrain gilts, from 2 nucleus farms (farm A: n = 302; farm B: n = 241) of 1 breeding company, were tested at an average age of 214 d (SD 12.2 d) for aggressive behavior by 1 observer. Observations included the frequencies of aggressive attack and reciprocal fighting during mixing with unfamiliar gilts. On farm A 41% of the gilts were purebred Pietrains, whereas 59% were purebred Landrace or Duroc gilts. On the farm B 42% of the gilts were purebred Pietrains, and 58% purebred Large White gilts. The average size of the newly mixed groups of gilts was 28 animals on farm A and 18 animals on farm B. The Pietrain gilts from the 2 herds were genetically closely linked. They were the offspring of 96 sires, with 64% of these sires having tested progeny in both farms. There were clear differences in the housing of the animals between the 2 farms. The test pen on farm A had a solid concrete floor littered with wooden shavings and was equipped with a dry feeder. On farm B there was a partly slatted floor, and the gilts were fed by an electronic sow feeder. Mean space allowance was 2.6 m(2)/gilt on farm A and 3.9 m(2)/gilt on farm B. Although large interindividual differences existed, gilts from farm B performed numerically more aggressive attack (mean 1.12, SD 1.42 vs. mean 0.71, SD 1.20) and reciprocal fighting (mean 0.78, SD 0.98 vs. mean 0.44, SD 0.82) when compared with gilts from farm A. The heritabilities and additive genetic variances for behavioral traits were estimated with a linear animal model and were on a low level in farm A (h(2) = 0.11, SE = 0.07, and σ(2)a = 0.12 for aggressive attack and h(2) = 0.04, SE = 0.07, and σ(2)a = 0.02 for reciprocal fighting) and on a moderate level in farm B (h(2) = 0.29, SE = 0.13, and σ(2)a = 0.44 for aggressive attack and h(2) = 0.33, SE = 0.12, and σ(2)a = 0.27 for reciprocal fighting). For both aggressive attack and reciprocal fighting, genetic correlation of the same trait between farm A and farm B was 1.0. Therefore, aggressive behavior does not seem to be influenced by genotype × environment interactions. Under these circumstances aggressions in group housing can be reduced by genetic selection against aggressive behavior. Therewith, the welfare and health of sows will ultimately increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.