Two-pore domain potassium (K2P) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K2P channels. We describe A1899 as a potent and highly selective blocker of the K2P channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K2P open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K2P channels.
The time course of inactivation of voltage-activated potassium (Kv) channels is an important determinant of the firing rate of neurons. In many Kv channels highly unsaturated lipids as arachidonic acid, docosahexaenoic acid and anandamide can induce fast inactivation. We found that these lipids interact with hydrophobic residues lining the inner cavity of the pore. We analysed the effects of these lipids on Kv1.1 current kinetics and their competition with intracellular tetraethylammonium and Kvb subunits. Our data suggest that inactivation most likely represents occlusion of the permeation pathway, similar to drugs that produce 'open-channel block'. Open-channel block by drugs and lipids was strongly reduced in Kv1.1 channels whose amino acid sequence was altered by RNA editing in the pore cavity, and in Kv1.x heteromeric channels containing edited Kv1.1 subunits. We show that differential editing of Kv1.1 channels in different regions of the brain can profoundly alter the pharmacology of Kv1.x channels. Our findings provide a mechanistic understanding of lipid-induced inactivation and establish RNA editing as a mechanism to induce drug and lipid resistance in Kv channels.
Inactivation of voltage-gated Kv1 channels can be altered by Kvbeta subunits, which block the ion-conducting pore to induce a rapid ('N-type') inactivation. Here, we investigate the mechanisms and structural basis of Kvbeta1.3 interaction with the pore domain of Kv1.5 channels. Inactivation induced by Kvbeta1.3 was antagonized by intracellular PIP(2). Mutations of R5 or T6 in Kvbeta1.3 enhanced Kv1.5 inactivation and markedly reduced the effects of PIP(2). R5C or T6C Kvbeta1.3 also exhibited diminished binding of PIP(2) compared with wild-type channels in an in vitro lipid-binding assay. Further, scanning mutagenesis of the N terminus of Kvbeta1.3 revealed that mutations of L2 and A3 eliminated N-type inactivation. Double-mutant cycle analysis indicates that R5 interacts with A501 and T480 of Kv1.5, residues located deep within the pore of the channel. These interactions indicate that Kvbeta1.3, in contrast to Kvbeta1.1, assumes a hairpin structure to inactivate Kv1 channels. Taken together, our findings indicate that inactivation of Kv1.5 is mediated by an equilibrium binding of the N terminus of Kvbeta1.3 between phosphoinositides (PIPs) and the inner pore region of the channel.
SUMMARYIn rat brain slices, the Kv channel blocker 4-aminopyridine (4-AP) induces seizure-like events. This effect is absent in slices from chronic epileptic rats generated using the kainic acid model. The reason for this phenomenon remained elusive as an altered expression level of Kv channels was ruled out as a mechanism. We recently described that the Ile400Val RNA editing of Kv1.1 generates 4-APinsensitive Kv1 channels (Kv1.1 I400V ). We therefore hypothesized that altered RNA editing levels account for the reduced ictogenic potency of 4-AP in chronic epileptic rats. We found fourfold increased RNA editing ratios in the entorhinal cortex of chronic epileptic animals compared to healthy control animals. Electrophysiologic recordings in Xenopus oocytes revealed that the observed increased Kv1.1 I400V editing level can in fact lead to significant loss of 4-AP sensitivity. Our data suggest that altered Kv1.1 I400V RNA editing contributes to the reduced ictogenic potential of 4-AP in chronic epileptic rats.
SCN5A encodes for the α-subunit of the cardiac voltage-gated sodium channel Nav1.5. Gain-of-function mutations in SCN5A are related to congenital long QT syndrome (LQTS3) characterized by delayed cardiac repolarization, leading to a prolonged QT interval in the ECG. Loss-of-function mutations in SCN5A are related to Brugada syndrome (BrS), characterized by an ST-segment elevation in the right precordial leads (V1-V3). The aim of this study was the characterization of a large set of novel SCN5A variants found in patients with different cardiac phenotypes, mainly LQTS and BrS. SCN5A variants of 13 families were functionally characterized in Xenopus laevis oocytes using the two-electrode voltage-clamp technique. We found in most of the cases, but not all, that the electrophysiology of the variants correlated with the clinically diagnosed phenotype. A susceptibility to develop LQTS can be suggested in patients carrying the variants S216L, K480N, A572D, F816Y, and G983D. However, taking the phenotype into account, the presence of the variants in genomic data bases, the mutational segregation, combined with our in vitro and in silico experiments, the variants S216L, S262G, K480N, A572D, F816Y, G983D, and T1526P remain as variants of unknown significance. However, the SCN5A variants R568H and A993T can be classified as pathogenic LQTS3 causing mutations, while R222stop and R2012H are novel BrS causing mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.