Abstract. Quantum gravimeters are a promising new development allowing for continuous absolute gravity monitoring while remaining user-friendly and transportable. In this study, we present experiments carried out to assess the capacity of the AQG#B01 in view of future deployment as a field gravimeter for hydrogeophysical applications. The AQG#B01 is the field version follow-up of the AQG#A01 portable absolute quantum gravimeter developed by the French quantum sensor company Muquans. We assess the instrument's performance in terms of stability (absence of instrumental drift) and sensitivity in relation to other gravimeters. No significant instrumental drift was observed over several weeks of measurement. We discuss the observations concerning the accuracy of the AQG#B01 in comparison with a state-of-the-art absolute gravimeter (Micro-g-LaCoste, FG5#228). We report the repeatability to be better than 50 nm s−2. This study furthermore investigates whether changes in instrument tilt and external temperature and a combination of both, which are likely to occur during field campaigns, influence the measurement of gravitational attraction. We repeatedly tested external temperatures between 20 and 30 ∘C and did not find any significant effect. As an example of a geophysical signal, a 100 nm s−2 gravity change is detected with the AQG#B01 after a rainfall event at the Larzac geodetic observatory (southern France). The data agreed with the gravity changes measured with a superconducting relative gravimeter (GWR, iGrav#002) and the expected gravity change simulated as an infinite Bouguer slab approximation. We report 2 weeks of stable operation under semi-terrain conditions in a garage without temperature-control. We close with operational recommendations for potential users and discuss specific possible future field applications. While not claiming completeness, we nevertheless present the first characterization of a quantum gravimeter carried out by future users. Selected criteria for the assessment of its suitability in field applications have been investigated and are complemented with a discussion of further necessary experiments.
Abstract. Essentially all hydrogeological processes are strongly influenced by the subsurface spatial heterogeneity and the temporal variation of environmental conditions, hydraulic properties, and solute concentrations. This spatial and temporal variability needs to be considered when studying hydrogeological processes in order to employ adequate mechanistic models or perform upscaling. The scale at which a hydrogeological system should be characterized in terms of its spatial heterogeneity and temporal dynamics depends on the studied process and it is not always necessary to consider the full complexity. In this paper, we identify a series of hydrogeological processes for which an approach coupling the monitoring of spatial and temporal variability, including 4D imaging, is often necessary: (1) groundwater fluxes that control (2) solute transport, mixing and reaction processes, (3) vadose zone dynamics, and (4) surface-subsurface water interaction occurring at the interface between different subsurface compartments. We first identify the main challenges related to the coupling of spatial and temporal fluctuations for these processes. Then, we highlight some recent innovations that have led to significant breakthroughs in this domain. We finally discuss how spatial and temporal fluctuations affect our ability to accurately model them and predict their behavior. We thus advocate a more systematic characterization of the dynamic nature of subsurface processes, and the harmonization of open databases to store hydrogeological data sets in their four-dimensional components, for answering emerging scientific question and addressing key societal issues.
Abstract. Essentially all hydrogeological processes are strongly influenced by the subsurface spatial heterogeneity and the temporal variation of environmental conditions, hydraulic properties, and solute concentrations. This spatial and temporal variability generally leads to effective behaviors and emerging phenomena that cannot be predicted from conventional approaches based on homogeneous assumptions and models. However, it is not always clear when, why, how, and at what scale the 4D (3D + time) nature of the subsurface needs to be considered in hydrogeological monitoring, modeling, and applications. In this paper, we discuss the interest and potential for the monitoring and characterization of spatial and temporal variability, including 4D imaging, in a series of hydrogeological processes: (1) groundwater fluxes, (2) solute transport and reaction, (3) vadose zone dynamics, and (4) surface–subsurface water interactions. We first identify the main challenges related to the coupling of spatial and temporal fluctuations for these processes. We then highlight recent innovations that have led to significant breakthroughs in high-resolution space–time imaging and modeling the characterization, monitoring, and modeling of these spatial and temporal fluctuations. We finally propose a classification of processes and applications at different scales according to their need and potential for high-resolution space–time imaging. We thus advocate a more systematic characterization of the dynamic and 3D nature of the subsurface for a series of critical processes and emerging applications. This calls for the validation of 4D imaging techniques at highly instrumented observatories and the harmonization of open databases to share hydrogeological data sets in their 4D components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.