Several vertebrate microRNAs (miRNAs) have been implicated in cellular processes such as muscle differentiation, synapse function, and insulin secretion. In addition, analysis of Dicer null mutants has shown that miRNAs play a role in tissue morphogenesis. Nonetheless, only a few loss-of-function phenotypes for individual miRNAs have been described to date. Here, we introduce a quick and versatile method to interfere with miRNA function during zebrafish embryonic development. Morpholino oligonucleotides targeting the mature miRNA or the miRNA precursor specifically and temporally knock down miRNAs. Morpholinos can block processing of the primary miRNA (pri-miRNA) or the pre-miRNA, and they can inhibit the activity of the mature miRNA. We used this strategy to knock down 13 miRNAs conserved between zebrafish and mammals. For most miRNAs, this does not result in visible defects, but knockdown of miR-375 causes defects in the morphology of the pancreatic islet. Although the islet is still intact at 24 hours postfertilization, in later stages the islet cells become scattered. This phenotype can be recapitulated by independent control morpholinos targeting other sequences in the miR-375 precursor, excluding off-target effects as cause of the phenotype. The aberrant formation of the endocrine pancreas, caused by miR-375 knockdown, is one of the first loss-of-function phenotypes for an individual miRNA in vertebrate development. The miRNA knockdown strategy presented here will be widely used to unravel miRNA function in zebrafish.
BackgroundAberrant regulation of cell migration drives progression of many diseases, including cancer cell invasion and metastasis formation. Analysis of tumour invasion and metastasis in living organisms to date is cumbersome and involves difficult and time consuming investigative techniques. For primary human tumours we establish here a simple, fast, sensitive and cost-effective in vivo model to analyse tumour invasion and metastatic behaviour.MethodsWe fluorescently labelled small explants from gastrointestinal human tumours and investigated their metastatic behaviour after transplantation into zebrafish embryos and larvae. The transparency of the zebrafish embryos allows to follow invasion, migration and micrometastasis formation in real-time. High resolution imaging was achieved through laser scanning confocal microscopy of live zebrafish.ResultsIn the transparent zebrafish embryos invasion, circulation of tumour cells in blood vessels, migration and micrometastasis formation can be followed in real-time. Xenografts of primary human tumours showed invasiveness and micrometastasis formation within 24 hours after transplantation, which was absent when non-tumour tissue was implanted. Furthermore, primary human tumour cells, when organotopically implanted in the zebrafish liver, demonstrated invasiveness and metastatic behaviour, whereas primary control cells remained in the liver. Pancreatic tumour cells showed no metastatic behaviour when injected into cloche mutant embryos, which lack a functional vasculature.ConclusionOur results show that the zebrafish is a useful in vivo animal model for rapid analysis of invasion and metastatic behaviour of primary human tumour specimen.
Lymphatic vessels arise chiefly from preexisting embryonic veins. Genetic regulators of lymphatic fate are known, but how dynamic cellular changes contribute during the acquisition of lymphatic identity is not understood. We report the visualization of zebrafish lymphatic precursor cell dynamics during fate restriction. In the cardinal vein, cellular commitment is linked with the division of bipotential Prox1-positive precursor cells, which occurs immediately prior to sprouting angiogenesis. Following precursor division, identities are established asymmetrically in daughter cells; one daughter cell becomes lymphatic and progressively upregulates Prox1, and the other downregulates Prox1 and remains in the vein. Vegfc drives cell division and Prox1 expression in lymphatic daughter cells, coupling signaling dynamics with daughter cell fate restriction and precursor division.
Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.