Cysteine peptidases (CPs) of Entamoeba histolytica are considered to be important pathogenicity factors. Previous studies have found that under standard axenic culture conditions, only four (ehcp-a1, ehcp-a2, ehcp-a5, and ehcp-a7) out of 35 papain-like ehcp genes present in the E. histolytica genome are expressed at high levels. Little is known about the expression of CPs in E. histolytica during amoebic liver abscess (ALA) formation. In the current study, a quantitative real-time PCR assay was developed to determine the expression of the various ehcp genes during ALA formation in animal models. Increased expression of four ehcp genes (ehcp-a3, -a4, -a10, and -c13) was detected in the gerbil and mouse models. Increased expression of another three ehcp genes (ehcp-a5, -a6, and -a7) was detected in the mouse model only, and two other ehcp genes (ehcp-b8 and -b9) showed increased expression in the gerbil model only. Trophozoites of the nonpathogenic E. histolytica HM-1:IMSS clone A1, which was unable to induce ALAs, were transfected with vectors enabling overexpression of those CPs that are expressed at high levels under culture conditions or during ALA formation. Interestingly, overexpression of ehcp-b8, -b9, and -c13 restored the pathogenic phenotype of the nonpathogenic clone A1 whereas overexpression of various other peptidase genes had no effect on the pathogenicity of this clone.
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.
The shedding of ectodomains is a crucial mechanism in many physiological and pathological events. A disintegrin and metalloprotease-17 (ADAM17) is a key sheddase involved in essential processes, such as development, regeneration, and immune defense. ADAM17 exists in two conformations which differ in their disulfide connection in the membrane-proximal domain (MPD). Protein-disulfide isomerases (PDIs) on the cell surface convert the open MPD into a rigid closed form, which corresponds to inactive ADAM17. ADAM17 is expressed in its open activatable form in the endoplasmic reticulum (ER) and consequently must be protected against ER-resident PDI activity. Here, we show that the chaperone 78-kDa glucose-regulated protein (GRP78) protects the MPD against PDI-dependent disulfide-bond isomerization by binding to this domain and, thereby, preventing ADAM17 inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.