1. Visual interneurons tuned to the motion of small objects are found in many animal species and are assumed to be the neuronal basis of figure-ground discrimination by relative motion. A well-examined example is the FD1-cell in the third visual neuropil of blowflies. This cell type responds best to motion of small objects. Motion of extended patterns elicits only small responses. As a neuronal mechanism that leads to such a response characteristic, it was proposed that the FD1-cell is inhibited by the two presumably GABAergic and, thus, inhibitory CH-cells, the VCH- and the DCH-cell. The CH-cells respond best to exactly that type of motion by which the activity of the FD1-cell is reduced. The hypothesis that the CH-cells inhibit the FD1-cell and, thus, mediate its selectivity to small moving objects was tested by ablating the CH-cells either pharmacologically or by photoinactivation. 2. After application of the gamma-aminobutyric acid (GABA) antagonist picrotoxinin, the FD1-cell responds more strongly to large-field than to small-field motion, i.e., it has lost its small-field selectivity. This suggests that the tuning of the FD1-cell to small moving objects relies on a GABAergic mechanism and, thus, most likely on the CH-cells. 3. The role of each CH-cell for small-field tuning was determined by inactivating them individually. They were injected with a fluorescent dye and then ablated by laser illumination. Only photoinactivation of the VCH-cell eliminated the specific selectivity of the FD1-cell for small-field motion. Ablation of the DCH-cell did not significantly change the response characteristic of the FD1-cell. This reveals the important role of the VCH-cells in mediating the characteristic sensitivity of the FD1-cell to motion of small objects. 4. The FD1-cell is most sensitive to motion of small objects in the ventral part of the ipsilateral visual field, whereas motion in the dorsal part influences the cell only weakly. This specific feature fits well to the sensitivity of the VCH-cell to ipsilateral motion that is most pronounced in the ventral part of the visual field. The spatial sensitivity distribution of the FD1-cell matches also the characteristics of figure-ground discrimination and fixation behavior.
SUMMARYThe strength of stimulus-induced responses at the neuronal and the behavioural level often depends on the internal state of an animal. Within pathways processing sensory information and eventually controlling behavioural responses, such gain changes can originate at several sites. Using motion-sensitive lobula plate tangential cells (LPTCs) of blowflies, we address whether and in which way information processing changes for two different states of motor activity. We distinguish between the two states on the basis of haltere movements. Halteres are the evolutionarily transformed hindwings of flies. They oscillate when the animals walk or fly. LPTCs mediate, amongst other behaviours, head optomotor responses. These are either of large or small amplitude depending on the state of motor activity. Here we find that LPTC responses also depend on the motor activity of flies. In particular, LPTC responses are enhanced when halteres oscillate. Nevertheless, the response changes of LPTCs do not account for the corresponding large gain changes of head movements. Moreover, haltere activity itself does not change the activity of LPTCs. Instead, we propose that a central signal associated with motor activity changes the gain of head optomotor responses and the response properties of LPTCs.
Synaptic transmission between a graded potential neuron and a spiking neuron was investigated in vivo using sensory stimulation instead of artificial excitation of the presynaptic neuron. During visual motion stimulation, individual presynaptic and postsynaptic neurons in the brain of the fly were electrophysiologically recorded together with concentration changes of presynaptic calcium (Delta[Ca(2+)](pre)). Preferred-direction motion leads to depolarization of the presynaptic neuron. It also produces pronounced increases in [Ca(2+)](pre) and the postsynaptic spike rate. Motion in the opposite direction was associated with hyperpolarization of the presynaptic cell but only a weak reduction in [Ca(2+)](pre) and the postsynaptic spike rate. Apart from this rectification, the relationships between presynaptic depolarizations, Delta[Ca(2+)](pre), and postsynaptic spike rates are, on average, linear over the entire range of activity levels that can be elicited by sensory stimulation. Thus, the inevitably limited range in which the gain of overall synaptic signal transfer is constant appears to be adjusted to sensory input strengths.
19. Typically, pairs of stacks of images of secondary and tertiary dendritic branches (test and control sites) were collected at ϳ15-min intervals. Images were stored digitally and analyzed offline essentially unprocessed. where 0 is the largest angle for which protrusions are measured (Ͻ/4). To estimate an upper bound for the error, we assume lЈ ϭ 2.75 m and r ϭ 0.5 m, and solve for l. This calculation suggests that we might underestimate the true length of protrusions by up to 13%. Only one set of experiments was performed per neuron (n refers to the number of neurons). Changes in the number of protrusions after tetanus were distributed in a non-Gaussian manner.
Representations of optic¯ow are encoded in¯y tangential neurons by pooling the signals of many retinotopically organized local motion-sensitive inputs as well as of other tangential cells originating in the ipsi-and contralateral half of the brain. In the so called HSE cell, a neuron involved in optomotor course control, two contralateral input elements, the H1 and H2 cells, mediate distinct EPSPs. These EPSPs frequently elicit spike-like depolarizations in the HSE cell. The synaptic transmission between the H2 and the HSE cell is analysed in detail and shown to be very reliable with respect to the amplitude and time-course of the postsynaptic potential. As a consequence of its synaptic input, the HSE cell responds best to wide-®eld motion, such as that generated on the eyes when the animal turns about its vertical body axis. It is shown that the speci®city of the HSE cell for this type of optic¯ow is much enhanced if rapid membrane depolarizations, such as large-amplitude EPSPs or spike-like depolarizations, are taken into account rather than the average membrane potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.