The pathogenicity of Staphylococcus aureus strains varies tremendously (as seen with animals). It is largely dependent on global regulators, which control the production of toxins, virulence, and fitness factors. Despite the vast knowledge of staphylococcal molecular genetics, there is still widespread dispute over what factors must come together to make a strain highly virulent. S. aureus NCTC8325 (RN1 and derivatives) is a widely used model strain for which an incomparable wealth of knowledge has accumulated in the almost 50 years since its isolation. Although RN1 has functional agr, sarA, and sae global regulators, it is defective in two regulatory genes, rsbU (a positive activator of SigB) and tcaR (an activator of protein A transcription), and is therefore considered by many to be a poor model for studies of regulation and virulence. Here, we repaired these genes and compared the resulting RN1 derivatives with other widely used strains, Newman, USA300, UAMS-1, and COL, plus the parental RN1, with respect to growth, extracellular protein pattern, hemolytic activity, protein A production, pigmentation, biofilm formation, and mouse lethality. The tcaR-repaired strain, showed little alteration in these properties. However, the rsbU-repaired strain was profoundly altered. Hemolytic activity was largely decreased, the exoprotein pattern became much more similar to that of typical wild-type (wt) S. aureus, and there was a surprising increase in mouse lethality. We note that each of the strains tested has a mutational alteration in one or more other regulatory functions, and we conclude that the repaired RN1 is a good model strain for studies of staphylococcal regulation and pathobiology; although strain Newman has been used extensively for such studies in recent years, it has a missense mutation in saeS, the histidine kinase component of the sae signaling module, which profoundly alters its regulatory phenotype. If this mutation were repaired, Newman would be considerably improved as a model strain.As a classical, dangerous, and universal human pathogen, Staphylococcus aureus has aroused continuing interest in its epidemiology, pathogenesis, and antibiotic resistance and other features of its pathobiology. This interest has led, concomitantly with the development of bacterial molecular biology, to the development of a model strain for the analysis of staphylococcal molecular genetics in relation to the pathogenicity of the organism. This strain, NCTC8325, was isolated in 1960 from a sepsis patient and utilized as the propagating strain for phage 47 of the international phage typing system. It was originally chosen for research owing to its sensitivity to all known antibiotics and was initially used primarily for studies of antibiotic resistance transfer and carriage by plasmids (32). It is designated RN1 in the Novick lab strain collection and is presently maintained by the Central Public Health Laboratory, Colindale, London, United Kingdom, by the ATCC and by the recently established Network on Antimicrobial Resi...
SUMMARY The gram-positive bacterium Staphylococcus aureus is a frequent component of the human microbial flora that can turn into a dangerous pathogen. As such, this organism is capable of infecting almost every tissue and organ system in the human body. It does so by actively exporting a variety of virulence factors to the cell surface and extracellular milieu. Upon reaching their respective destinations, these virulence factors have pivotal roles in the colonization and subversion of the human host. It is therefore of major importance to obtain a clear understanding of the protein transport pathways that are active in S. aureus. The present review aims to provide a state-of-the-art roadmap of staphylococcal secretomes, which include both protein transport pathways and the extracytoplasmic proteins of these organisms. Specifically, an overview is presented of the exported virulence factors, pathways for protein transport, signals for cellular protein retention or secretion, and the exoproteomes of different S. aureus isolates. The focus is on S. aureus, but comparisons with Staphylococcus epidermidis and other gram-positive bacteria, such as Bacillus subtilis, are included where appropriate. Importantly, the results of genomic and proteomic studies on S. aureus secretomes are integrated through a comparative “secretomics” approach, resulting in the first definition of the core and variant secretomes of this bacterium. While the core secretome seems to be largely employed for general housekeeping functions which are necessary to thrive in particular niches provided by the human host, the variant secretome seems to contain the “gadgets” that S. aureus needs to conquer these well-protected niches.
Staphylococcus aureus synthesizes a large number of extracellular proteins that have been postulated to play a role in bacterial virulence. The proteomic approach was used to analyse the pattern of extracellular proteins of two different S. aureus strains, RN6390 and COL. Thirty-nine protein spots were identified by N-terminal sequencing or MALDI-TOF-MS. The differences of the extracellular protein patterns between both strains are striking. Among the 18 proteins identified in S. aureus COL there are nine proteins not yet discovered in S. aureus RN6390. These are enterotoxin B, leukotoxin D, enterotoxin, serin proteases (SplA and SplC), thermonuclease, an IgG binding protein and two so far unknown proteins in S. aureus with similarities to SceD precursor in Staphylococcus carnosus and to synergohymenotropic toxin precursor in Streptococcus intermedius. In contrast, lipase as well as staphylokinase identified in S. aureus RN6390 were not detectable in S. aureus COL under the same conditions. By using a regulatory mutant of sarA (ALC136) isogenic to strain RN6390 we identified five proteins positively regulated by SarA and 12 proteins negatively regulated by SarA. Besides V8 protease (StsP) and Hlb already described to be regulated by the sar locus new putatively sarA-dependent proteins were identified, e.g. glycerolester hydrolase and autolysin both down-regulated in the sarA mutant, and aureolysin, staphylokinase, staphopain and format tetrahydrofolate lyase up-regulated in the mutant. Moreover, the role of sigma B in expression of extracellular proteins was studied. Interestingly, we found 11 proteins at an enhanced level in a sigB mutant of S. aureus COL, among them enterotoxin B, alpha and beta hemolysin, serine proteases SplA and SplB, leukotoxin D, and staphopain homologues. The sigma B-dependent repression of gene expression occurs at the transcriptional level. Only one protein, SceD, was identified whose synthesis was down-regulated in the mutant indicating that its gene belongs to the sigma B-dependent general stress regulon.
Sequencing of at least 13 Staphylococcus aureus isolates has shown that genomic plasticity impacts significantly on the repertoire of virulence factors. However, genome sequencing does not reveal which genes are expressed by individual isolates. Here, we have therefore performed a comprehensive survey of the composition and variability of the S. aureus exoproteome. This involved multilocus sequence typing, virulence gene, and prophage profiling by multiplex PCR, and proteomic analyses of secreted proteins using 2-DE. Dissection of the exoproteomes of 25 clinical isolates revealed that only seven out of 63 identified secreted proteins were produced by all isolates, indicating a remarkably high exoproteome heterogeneity within one bacterial species. Most interesting, the observed variations were caused not only by genome plasticity, but also by an unprecedented variation in secretory protein production due to differences in transcriptional and post-transcriptional regulation. Our data imply that genomic studies on virulence gene conservation patterns need to be complemented by analyses of the extracellular protein pattern to assess the full virulence potential of bacterial pathogens like S. aureus. Importantly, the extensive variability of secreted virulence factors in S. aureus also suggests that development of protective vaccines against this pathogen requires a carefully selected combination of invariably produced antigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.