Epidemiological studies have linked whole-grain (WG) cereal consumption to a reduced risk of developing several chronic diseases-coronary heart disease, arteriosclerosis, type-2 diabetes, and some form of cancers. The underlying physiological mechanisms behind the protective effects of WG are unclear, but can most likely be assigned to a concerted action of dietary fiber (DF) and a wide variety of phytochemicals. Physiologically, it is important that soluble nonstarch polysaccharides contribute to higher viscosity in the small intestine as this may influence rate and extent of digestion and absorption. Associated with the DF matrix of cereals is an array of nonnutritive constituents predominantly concentrated in the bran fraction. Among them, the phenolic phytochemicals, benzoic acid and cinnamic derivatives and lignans, are of importance in a nutritional-health perspective. Only a small fraction of the phenolics is absorbed in the small intestine, but the availability can be increased by bioprocessing. The major part, however, is passed to the large intestine where the microbiota, which degrade and metabolize DF to SCFAs and gases, also convert the phenolic compounds into a range of other metabolites that are absorbed into the body and with the capability of influencing the metabolism at the cellular level.
Lignans have gained nutritional interest due to their promising role in the prevention of lifestyle diseases. However, epidemiological studies are in need of more evidence to link the intake of lignans to this promising role. In this context, it is necessary to study large population groups to obtain sufficient statistical power. Therefore, there is a demand for fast, sensitive, and accurate methods for quantitation with high throughput of samples. This paper presents a validated LC-MS/MS method for the quantitation of eight plant lignans (matairesinol, hydroxymatairesinol, secoisolariciresinol, lariciresinol, isolariciresinol, syringaresinol, medioresinol, and pinoresinol) and two enterolignans (enterodiol and enterolactone) in both human and pig plasma and urine. The method showed high selectivity and sensitivity allowing quantitation of lignans in the range of 0.024-100 ng/mL and with a run time of only 4.8 min per sample. The method was successfully applied to quantitate lignans in biofluids from ongoing studies with humans and pigs.
Plant lignans are diphenolic compounds ingested with whole grains and seeds and converted to enterolignans by the colonic microbiota. In the present study, we investigated absorption and metabolism of plant lignans and enterolignans in vivo after consumption of cereal-based diets. Six pigs fitted with catheters in the mesenteric artery and portal vein and with a flow probe attached to the portal vein along with twenty pigs for quantitative collection of urine were used for this study. The animals were fed bread based on wheat flour low in plant lignans and three lignan-rich breads based on whole-wheat grain, wheat aleurone flour or rye aleurone flour. Plant lignans and enterolignans in plasma were monitored daily at fast after 0-3 d of lignan-rich intake, and on the 4th day of lignan-rich intake a 10-h profile was completed. Urine samples were collected after 11 d of lignan-rich diet consumption. The concentrations of plant lignans were low at fast, and was 1·2-2·6 nmol/l after switching from the low-lignan diet to the lignan-rich diets. However, on the profile day, the concentration and quantitative absorption of plant lignans increased significantly from 33 nmol/h at fast to 310 nmol/h 0-2·5 h after ingestion with a gradual increase in the following periods. Quantitatively, the absorption of plant lignans across diets amounted to 7 % of ingested plant lignans, whereas the urinary excretion of plant lignans was 3 % across diets. In conclusion, there is a substantial postprandial uptake of plant lignans from cereals, suggesting that plant lignans are absorbed from the small intestine.
Use of antibiotics up to 12 months before enrollment was associated with lower plasma enterolactone levels, especially among women.
High plant lignan intake is associated with a number of health benefits, possibly induced by the lignan metabolite enterolactone (ENL). The gut microbiota plays a crucial role in converting dietary lignans into ENL, and epidemiological studies have shown that use of antibiotics is associated with lower levels of ENL. Here we investigate the link between antibiotic use and lignan metabolism in pigs using LC-MS/MS. The effect of lignan intake and antibiotic use on the gut microbial community and the pig metabolome is studied by 16S rRNA sequencing and nontargeted LC-MS. Treatment with antibiotics resulted in substantially lower concentrations of ENL compared with concentrations detected in untreated animals, whereas the plasma concentrations of plant lignans were unchanged. Both diet and antibiotic treatment affected the clustering of urinary metabolites and significantly altered the proportions of taxa in the gut microbiota. Diet, but not antibiotic treatment, affected the plasma lipid profile, and a lower concentration of LDL cholesterol was observed in the pigs fed a high lignan diet. This study provides solid support for the associations between ENL concentrations and use of antibiotics found in humans and indicates that the lower ENL concentration may be a consequence of the ecological changes in the microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.