Pain response was seen in up to 71% of the patients with a dose response observed 2 weeks after administration. The highly tolerable side-effect profile of radium-223 previously reported was confirmed.
Purpose
223Ra-Dichloride (223Ra) is a novel bone-seeking alpha-emitter that prolongs survival in patients with castration-resistant metastatic prostate cancer. We conducted a study to better profile the pharmacokinetics, pharmacodynamics, and biodistribution of this agent.
Methods
Ten patients received either 50, 100, or 200 kBq of 223Ra per kilogram of body weight. Subsequently, six of these ten patients received a second dose of 50 kBq/kg. Pharmacokinetics and biodistribution were assessed by serial blood sampling, planar imaging, and whole-body counting. Pharmacodynamic assessment was based on measurements of prostate-specific antigen, bone alkaline phosphatase, and serum N-telopeptide. Safety was also assessed.
Results
Pharmacokinetic studies showed rapid clearance of 223Ra from the vasculature, with a median of 14 % (range 9–34 %), 2 % (range 1.6–3.9 %), and 0.5 % (range 0.4–1.0 %) remaining in plasma at the end of infusion, after 4 h, and after 24 h, respectively. Biodistribution studies showed early passage into the small bowel and subsequent fecal excretion with a median of 52 % of administered 223Ra in the bowel at 24 h. Urinary excretion was relatively minor (median of 4 % of administered 223Ra). Bone retention was prolonged. No dose-limiting toxicity was observed. Pharmacodynamic effects were observed (alkaline phosphatase and serum N-telopeptides) in a significant fraction of patients.
Conclusion
223Ra cleared rapidly from plasma and rapidly transited into small bowel, with fecal excretion the major route of elimination. Administered activities up to 200 kBq/kg were associated with few side effects and appeared to induce a decline in serum indicators of bone turnover.
Complete spinal cord lesion leads to profound metabolic abnormalities and striking changes in muscle morphology. Here we assess the effects of electrically stimulated leg cycling (ESLC) on whole body insulin sensitivity, skeletal muscle glucose metabolism, and muscle fiber morphology in five tetraplegic subjects with complete C5-C7 lesions. Physical training (seven ESLC sessions/wk for 8 wk) increased whole body insulin-stimulated glucose uptake by 33+/-13%, concomitant with a 2.1-fold increase in insulin-stimulated (100 microU/ml) 3-O-methylglucose transport in isolated vastus lateralis muscle. Physical training led to a marked increase in protein expression of GLUT4 (378+/-85%), glycogen synthase (526+/-146%), and hexokinase II (204+/-47%) in vastus lateralis muscle, whereas phosphofructokinase expression (282+/-97%) was not significantly changed. Hexokinase II activity was significantly increased, whereas activity of phosphofructokinase, glycogen synthase, and citrate synthase was not changed after training. Muscle fiber type distribution and fiber area were markedly altered compared to able-bodied subjects before ESLC training, with no change noted in either parameter after ECSL training. In conclusion, muscle contraction improves insulin action on whole body and cellular glucose uptake in cervical cord-injured persons through a major increase in protein expression of key genes involved in the regulation of glucose metabolism. Furthermore, improvements in insulin action on glucose metabolism are independent of changes in muscle fiber type distribution.
Purpose
Ra-223, an α-particle emitting bone-seeking radionuclide, has recently been used in clinical trials for osseous metasteses of prostate cancer. We investigated the relationship between absorbed fraction-based red marrow dosimetry and cell level-dosimetry using a model that accounts for the expected localization of this agent relative to marrow cavity architecture. We show that cell level-based dosimetry is essential to understanding potential marrow toxicity.
Methods
The GEANT4 software package was used to create simple spheres representing marrow cavities. Ra-223 was positioned on the trabecular bone surface or in the endosteal layer and simulated for decay, along with the descendants. The interior of the sphere was divided into cell-size voxels and the energy was collected in each voxel and interpreted as dose cell histograms. The average absorbed dose values and absorbed fractions were also calculated in order to compare those results with previously published values.
Results
The absorbed dose was predominantly deposited near the trabecular surface. The dose cell histograms results were used to plot the percentage of cells that received a potentially toxic absorbed dose (2 or 4 Gy) as a function of the average absorbed dose over the marrow cavity. The results show (1) a heterogeneous distribution of cellular absorbed dose, strongly dependent on the position of the cell within the marrow cavity; and (2) that increasing the average marrow cavity absorbed dose, or equivalently, increasing the administered activity resulted in only a small increase in potential marrow toxicity (i.e., the number of cells receiving more than 4 or 2 Gy), for a range of average marrow cavity absorbed doses from 1 Gy to 20 Gy.
Conclusion
The results from the trabecular model differ markedly from a standard absorbed fraction method while presenting comparable average dose values. These suggest that increasing the amount of radioactivity may not substantially increase the risk of toxicity, a result unavailable to the absorbed fraction method of dose calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.