Instrumented indentation is a widespread tool for characterising the mechanical properties of biological materials. Here, we show that the ratio between indentation hardness and modulus is approximately constant in biological materials. A simple elastic-plastic series deformation model is employed to rationalise part of this correlation, and criteria for a meaningful comparison of indentation hardness across biological materials are proposed. The ratio between indentation hardness and modulus emerges as the key parameter characterising the relative amount of irreversible deformation during indentation. Despite their comparatively high hardness to modulus ratio, biological materials are susceptible to quasiplastic deformation, due to their high toughness: quasi-plastic deformation is hence hypothesised to be a frequent yet poorly understood phenomenon, highlighting an important area of future research.
Water shedding from leaves is a complex process depending on multiple leaf traits interacting with rain, wind and air humidity, and with the entire plant and surrounding vegetation. Here, we synthesise the current knowledge of the physics of water shedding with implications for plant physiology and ecology. We argue that the drop retention angle is a more meaningful parameter to characterise the water shedding capacity of leaves than the commonly measured static contact angle. The understanding of the mechanics of water shedding is largely derived from laboratory experiments on artificial rather than natural surfaces, often on individual aspects such as surface wettability or drop impacts. In contrast, field studies attempting to identify the adaptive value of leaf traits linked to water shedding are largely correlative in nature, with inconclusive results. We make a strong case for taking the hypothesis-driven experimental approach of biomechanical lab studies into a real-world field setting to gain a comprehensive understanding of leaf water shedding in a whole-plant ecological and evolutionary context.
The remarkable mechanical performance of biological materials is based on intricate structure-function relationships. Nanoindentation has become the primary tool for characterising biological materials, as it allows to relate structural changes to variations in mechanical properties on small scales. However, the respective theoretical background and associated interpretation of the parameters measured via indentation derives largely from research on 'traditional' engineering materials such as metals or ceramics. Here, we discuss the functional relevance of indentation hardness in biological materials by presenting a meta-analysis of its relationship with indentation modulus. Across seven orders of magnitude, indentation hardness was directly proportional to indentation modulus, illustrating that hardness is not an independent material property. Using a lumped parameter model to deconvolute indentation hardness into components arising from reversible and irreversible deformation, we establish criteria which allow to interpret differences in indentation hardness across or within biological materials. The ratio between hardness and modulus arises as a key parameter, which is a proxy for the ratio between irreversible and reversible deformation during indentation, and the material's yield strength. Indentation hardness generally increases upon material dehydration, however to a larger extend than expected from accompanying changes in indentation modulus, indicating that water acts as a 'plasticiser'. A detailed discussion of the role of indentation hardness, modulus and toughness in damage control during sharp or blunt indentation yields comprehensive guidelines for a performance-based ranking of biological materials, and suggests that quasi-plastic deformation is a frequent yet poorly understood damage mode, highlighting an important area of future research.
Carnivorous pitcher plants capture insects in cup-shaped leaves that function as motionless pitfall traps. Nepenthes gracilis evolved a unique ‘springboard' trapping mechanism that exploits the impact energy of falling raindrops to actuate a fast pivoting motion of the canopy-like pitcher lid. We superimposed multiple computed micro-tomography images of the same pitcher to reveal distinct deformation patterns in lid-trapping N. gracilis and closely related pitfall-trapping N. rafflesiana . We found prominent differences between downward and upward lid displacement in N. gracilis only. Downward displacement was characterized by bending in two distinct deformation zones whist upward displacement was accomplished by evenly distributed straightening of the entire upper rear section of the pitcher. This suggests an anisotropic impact response, which may help to maximize initial jerk forces for prey capture, as well as the subsequent damping of the oscillation. Our results point to a key role of pitcher geometry for effective ‘springboard' trapping in N. gracilis .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.