Methacrylate-based polymers represent promising nonviral gene delivery vectors, since they offer a large variety of polymer architectures and functionalities, which are beneficial for specific demands in gene delivery. In combination with controlled radical polymerization techniques, such as the reversible addition-fragmentation chain transfer polymerization, the synthesis of well-defined polymers is possible. In this study we prepared a library of defined linear polymers based on (2-aminoethyl)-methacrylate (AEMA), N-methyl-(2-aminoethyl)-methacrylate (MAEMA), and N,N-dimethyl-(2-aminoethyl)-methacrylate (DMAEMA) monomers, bearing pendant primary, secondary, and tertiary amino groups, and investigated the influence of the substitution pattern on their gene delivery capability. The polymers and the corresponding plasmid DNA complexes were investigated regarding their physicochemical characteristics, cytocompatibility, and transfection performance. The nonviral transfection by methacrylate-based polyplexes differs significantly from poly(ethylene imine)-based polyplexes, as a successful transfection is not affected by the buffer capacity. We observed that polyplexes containing a high content of primary amino groups (AEMA) offered the highest transfection efficiency, whereas polyplexes bearing tertiary amino groups (DMAEMA) exhibited the lowest transfection efficiency. Further insights into the uptake and release mechanisms could be identified by fluorescence and transmission electron microscopy, emphasizing the theory of membrane-pore formation for the time-efficient endosomal release of methacrylate-based vectors.
We show the potential of oligo(2-ethyl-2-oxazoline) (Ox)-shielded graft copolymers of (2-aminoethyl)-methacrylate and N-methyl-(2-aminoethyl)-methacrylate for pDNA delivery in HEK cells. For the effect of grafting density and side chain length concerning improved transfection properties through the concept of shielding to be investigated, copolymers were synthesized via the macromonomer method using a combination of cationic ring opening polymerization and reversible addition-fragmentation chain transfer polymerization to vary the degree of grafting (DG = 10 and 30%) as well as the side chain degree of polymerization (DP = 5 and 20). Investigations of the polyplex formation, in vitro flow cytometry, and confocal laser scanning microscopy measurements on the copolymer library revealed classical shielding properties of the Ox side chains, including highly reduced cytotoxicity and a partial decrease in transfection efficiency, as also reported for polyethylene glycol shielding. In terms of the transfection efficiency, the best performing copolymers (A- g-Ox(10) and M- g-Ox(10)) revealed equal or better performances compared to those of the corresponding homopolymers. In particular, the graft copolymers with low DG and side chain DP transfected well with over 10-fold higher IC values. In contrast, a DG of 30% resulted in a loss of transfection efficiency due to missing ability for endosomal release, and a side chain DP of 20 hampered the cellular uptake.
Front Cover: The in‐situ switch between different controlled/living polymerization methods remains a challenging but powerful tool to expand the wealth of well‐defined functional block copolymers. In article number https://doi.org/10.1002/marc.201800398, Ulrich S. Schubert and co‐workers present an approach that bridges the gap between cationic ring‐opening polymerization of 2‐oxazolines and the reversible addition‐fragmentation chain transfer process for the controlled synthesis of vinyl monomers in a straightforward manner and without the need for tedious purification steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.