International audienceThe interface between groundwater and surface water within riverine/riparian ecosystems--the hyporheic zone (HZ)--is experiencing a rapid growth of research interest from a range of scientific disciplines, often with different perspectives. The majority of the multi-disciplinary research aims to elucidate HZ process dynamics and their importance for surface water and groundwater ecohydrology and biogeochemical cycling. This paper presents a critical inter-disciplinary review of recent advances of research centred on the HZ and highlights the current state of knowledge regarding hydrological, biogeochemical and ecohydrological process understanding. The spatial and temporal variability of surface water and groundwater exchange (hyporheic exchange flows), biogeochemical cycling and heat exchange (thermal regime) are considered in relation to both experimental measurements and modelling of these phenomena. We explore how this knowledge has helped to increase our understanding of HZ ecohydrology, and particularly its invertebrate community, the processing of organic matter, trophic cascading and ecosystem engineering by macrophytes and other organisms across a range of spatial and temporal scales. In addition to providing a detailed review of HZ functions, we present an inter-disciplinary perspective on how to advance and integrate HZ process understanding across traditional discipline boundaries. We therefore attempt to highlight knowledge gaps and research needs within the individual disciplines and demonstrate how innovations and advances in research, made within traditional subject-specific boundaries (e.g. hydrology, biochemistry and ecology), can be used to enhance inter-disciplinary scientific progress by cross-system comparisons and fostering of greater dialogue between scientific disciplines
Diseases of failed inflammation resolution are common and largely incurable. Therapeutic induction of inflammation resolution is an attractive strategy to bring about healing without increasing susceptibility to infection. However, therapeutic targeting of inflammation resolution has been hampered by a lack of understanding of the underlying molecular controls. To address this drug development challenge, we developed an in vivo screen for proresolution therapeutics in a transgenic zebrafish model. Inflammation induced by sterile tissue injury was assessed for accelerated resolution in the presence of a library of known compounds. Of the molecules with proresolution activity, tanshinone IIA, derived from a Chinese medicinal herb, potently induced inflammation resolution in vivo both by induction of neutrophil apoptosis and by promoting reverse migration of neutrophils. Tanshinone IIA blocked proinflammatory signals in vivo, and its effects are conserved in human neutrophils, supporting a potential role in treating human inflammation and providing compelling evidence of the translational potential of this screening strategy.
The application of general successional theory to stream ecosystems has not been widely addressed due to a lack of long‐term studies on stream channels at sufficiently large spatial scales. Wolf Point Creek in Glacier Bay, Alaska, a lake‐fed stream that began to emerge from under glacial ice in the mid‐1940s, offers an opportunity to address this imbalance. We examine the stream's development from 1977 to 2005, with reference to concepts of succession and community assembly. Dispersal constraints have influenced the succession, as non‐insect taxa required at least 20 years to colonize. We suggest that tolerance is a major mechanism of macroinvertebrate community assembly. Most taxa, with the exception of the cold‐tolerant first colonizers, have persisted within the community following colonization, although relative abundance has changed markedly with time. However, biotic processes do influence colonization and succession. Redd (nest) digging by spawning salmon creates disturbed patches that facilitate the persistence of some early colonizers, and riparian vegetation facilitates colonization by caddisflies and chironomids. We further suggest that both deterministic and stochastic elements influence succession and community assembly in streams. Our study highlights the importance of reestablishing riparian vegetation during stream restoration programs and of increased in‐stream habitat complexity from inputs of coarse woody debris to improve nutrient retention, particularly of salmon carcasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.