& Key message Silver fir transplantations along elevational gradients revealed a high diversity but no local adaptation. Populations displayed similar abilities to adapt to new environments including those due to climate change. & Context The sustainability of forest stands depends on the ability of species and communities to adapt by combining plasticity and genetic evolution. Although well-documented at the scale of species distributions, the variability and adaptation of forest tree genetic resources are less understood at the short-distance scale. & Aims We analysed the effects of genetic and environmental factors on the local-scale phenotypic diversity of traits related to adaptation in Abies alba. We also sought to highlight local adaptation, revealing past selection. & Methods Six adaptive traits related to growth, phenology and survival were measured on seedlings from 57 half-sib families collected from 15 provenances and planted in a nine-site reciprocal transplant experiment distributed along three elevational gradients. & Results Most part of the phenotypic variability was attributed to the environmental factors. Provenances and families had also significant effects on seedling performances, but the genetic variability was mostly attributed to the families. No pattern of local adaptation was observed, except in the presence of lateral branches in the driest garden. & Conclusion The absence of local adaptation suggests a similar ability of all silver fir populations to develop in the various environments. This result provides favourable conditions for coping with the ongoing climate change without exotic resources enrichment.
Coral recruitment refers to the processes allowing maintenance and renewal of coral communities. Recruitment success is therefore indispensable for coral reef recovery after disturbances. Recruitment processes are governed by a variety of factors occurring at all spatial and temporal scales, from centimetres to hundreds of kilometres. In the present context of rising disturbances, it is thus of major importance to better understand the relative importance of different scales in this variation, and when possible, the factors associated with these scales. Multiscale spatio-temporal variability of scleractinian coral recruitment was investigated at two of the Mascarene Islands: Reunion and Rodrigues. Recruitment rates and taxonomic composition were examined during three consecutive six-month periods from regional to micro-local scales (i.e. from hundreds of kilometres to few centimetres) and between two protection levels (no-take zones and general protection zones). Very low recruitment rates were observed. Rodrigues displayed lower recruitment rates than Reunion. Recruit assemblage was dominated by Pocilloporidae (77.9%), followed by Acroporidae (9.9%) and Poritidae (5.2%). No protection effect was identified on coral recruitment, despite differences in recruitment rates among sites within islands. Recruits were patchily distributed within sites but no aggregative effect was detected, i.e. the preferentially colonised tiles were not spatially grouped. Recruits settled mainly on the sides of the tiles, especially at Rodrigues, which could be attributed to the high concentration of suspended matter. The variability of recruitment patterns at various spatial scales emphasises the importance of micro- to macro-local variations of the environment in the dynamics and maintenance of coral populations. High temporal variability was also detected, between seasons and years, which may be related to the early 2016 bleaching event at Rodrigues. The low recruitment rates and the absence of protection effect raise questions about the potential for recovery from disturbances of coral reefs in the Mascarene Islands.
Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is considered one of the most harmful plant diseases in the world. Special attention should be paid to R. pseudosolanacearum phylotype I due to its large host range, its worldwide distribution, and its high evolutionary potential. So far, the molecular epidemiology and population genetics of this bacterium are poorly understood. Until now, the genetic structure of the RSSC has been analyzed on the worldwide and regional scales. Emerging questions regarding evolutionary forces in RSSC adaptation to hosts now require genetic markers that are able to monitor RSSC field populations. In this study, we aimed to evaluate the multilocus variable-number tandem-repeat analysis (MLVA) approach for its ability to discriminate genetically close phylotype I strains and for population genetics studies. We developed a new MLVA scheme (MLVA-7) allowing us to genotype 580 R. pseudosolanacearum phylotype I strains extracted from susceptible and resistant hosts and from different habitats (stem, soil, and rhizosphere). Based on specificity, polymorphism, and the amplification success rate, we selected seven fast-evolving variable-number tandem-repeat (VNTR) markers. The newly developed MLVA-7 scheme showed higher discriminatory power than the previously published MLVA-13 scheme when applied to collections sampled from the same location on different dates and to collections from different locations on very small scales. Our study provides a valuable tool for fine-scale monitoring and microevolution-related study of R. pseudosolanacearum phylotype I populations.IMPORTANCE Understanding the evolutionary dynamics of adaptation of plant pathogens to new hosts or ecological niches has become a key point for the development of innovative disease management strategies, including durable resistance. Whereas the molecular mechanisms underlying virulence or pathogenicity changes have been studied thoroughly, the population genetics of plant pathogen adaptation remains an open, unexplored field, especially for plant-pathogenic bacteria. MLVA has become increasingly popular for epidemiosurveillance and molecular epidemiology studies of plant pathogens. However, this method has been used mostly for genotyping and identification on a regional or global scale. In this study, we developed a new MLVA scheme, targeting phylotype I of the soilborne Ralstonia solanacearum species complex (RSSC), specifically to address the bacterial population genetics on the field scale. Such a MLVA scheme, based on fast-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.