BackgroundEven if genetics play an important role, individual variation in stature remains unexplained at the molecular level. Indeed, genome-wide association study (GWAS) have revealed hundreds of variants that contribute to the variability of height but could explain only a limited part of it, and no single variant accounts for more than 0.3% of height variance. At the interface of genetics and environment, epigenetics contributes to phenotypic diversity. Quantifying the impact of epigenetic variation on quantitative traits, an emerging challenge in humans, has not been attempted for height. Since insulin-like growth factor 1 (IGF1) controls postnatal growth, we tested whether the CG methylation of the two promoters (P1 and P2) of the IGF1 gene is a potential epigenetic contributor to the individual variation in circulating IGF1 and stature in growing children.ResultsChild height was closely correlated with serum IGF1. The methylation of a cluster of six CGs located within the proximal part of the IGF1 P2 promoter showed a strong negative association with serum IGF1 and growth. The highest association was for CG-137 methylation, which contributed 13% to the variance of height and 10% to serum IGF1. CG methylation (studied in children undergoing surgery) was approximately 50% lower in liver and growth plates, indicating that the IGF1 promoters are tissue-differentially methylated regions (t-DMR). CG methylation was inversely correlated with the transcriptional activity of the P2 promoter in mononuclear blood cells and in transfection experiments, suggesting that the observed association of methylation with the studied traits reflects true biological causality.ConclusionsOur observations introduce epigenetics among the individual determinants of child growth and serum IGF1. The P2 promoter of the IGF1 gene is the first epigenetic quantitative trait locus (QTLepi) reported in humans. The CG methylation of the P2 promoter takes place among the multifactorial factors explaining the variation in human stature.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-015-0062-8) contains supplementary material, which is available to authorized users.
Short children using growth hormone (GH) to accelerate their growth respond to this treatment with a variable efficacy. The causes of this individual variability are multifactorial and could involve epigenetics. Quantifying the impact of epigenetic variation on response to treatments is an emerging challenge. Here we show that methylation of a cluster of CGs located within the P2 promoter of the insulin-like growth factor 1 (IGF1) gene, notably CG-137, is inversely closely correlated with the response of growth and circulating IGF1 to GH administration. For example, variability in CG-137 methylation contributes 25% to variance of growth response to GH. Methylation of CGs in the P2 promoter is negatively associated with the increased transcriptional activity of P2 promoter in patients' mononuclear blood cells following GH administration. Our observation indicates that epigenetics is a major determinant of GH signaling (physiology) and of individual responsiveness to GH treatment (pharmacoepigenetics).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.