The major cardiac voltage-gated sodium channel Nav1.5 associates with proteins that regulate its biosynthesis, localization, activity and degradation. Identification of partner proteins is crucial for a better understanding of the channel regulation. Using a yeast two-hybrid screen, we identified dynamitin as a Nav1.5-interacting protein. Dynamitin is part of the microtubule-binding multiprotein complex dynactin. When overexpressed it is a potent inhibitor of dynein/kinesin-mediated transport along the microtubules by disrupting the dynactin complex and dissociating cargoes from microtubules. The use of deletion constructs showed that the C-terminal domain of dynamitin is essential for binding to the first intracellular interdomain of Nav1.5. Co-immunoprecipitation assays confirmed the association between Nav1.5 and dynamitin in mouse heart extracts. Immunostaining experiments showed that dynamitin and Nav1.5 co-localize at intercalated discs of mouse cardiomyocytes. The whole-cell patch-clamp technique was applied to test the functional link between Nav1.5 and dynamitin. Dynamitin overexpression in HEK-293 (human embryonic kidney 293) cells expressing Nav1.5 resulted in a decrease in sodium current density in the membrane with no modification of the channel-gating properties. Biotinylation experiments produced similar information with a reduction in Nav1.5 at the cell surface when dynactin-dependent transport was inhibited. The present study strongly suggests that dynamitin is involved in the regulation of Nav1.5 cell-surface density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.