The vascular endothelium and shear stress are critical determinants of physiological hemostasis and platelet function in vivo, yet current diagnostic and monitoring devices do not fully incorporate endothelial function under flow in their assessment and, therefore, they can be unreliable and inaccurate. It is challenging to include the endothelium in assays for clinical laboratories or point-of-care settings because living cell cultures are not sufficiently robust. Here, we describe a microfluidic device that is lined by a human endothelium that is chemically fixed, but still retains its ability to modulate hemostasis under continuous flow in vitro even after few days of storage. This device lined with a fixed endothelium supports formation of platelet-rich thrombi in the presence of physiological shear, similar to a living arterial vessel. We demonstrate the potential clinical value of this device by showing that thrombus formation and platelet function can be measured within minutes using a small volume (0.5 mL) of whole blood taken from subjects receiving antiplatelet medications. The inclusion of a fixed endothelial microvessel will lead to biomimetic analytical devices that can potentially be used for diagnostics and point-of-care applications.Electronic supplementary materialThe online version of this article (doi:10.1007/s10544-016-0095-6) contains supplementary material, which is available to authorized users.
Actively contractile cardiomyocyte (CM) monolayer represents an interesting tool to study both cardiac diseases and injuries. However, this model is poorly transfectable with conventional agents. Consequently, there is a need to develop new carriers that could overcome this problem. Titanate nanotubes (TiONts) could be a potential candidate due to possibly higher cell uptake as a direct consequence of their shape. On the basis of this rationale, TiONts were assessed for their cytotoxicity and internalization pathways. Cytotoxicity was assessed for TiONts either functionalized with PEI or unfunctionalized and its spherical counterpart P25 TiO2. No cytotoxic effect was observed under TiONts, TiONts-PEI1800 and P25 TiO2 exposed conditions. The tubular morphology was found to be an important parameter promoting internalization while reversing the charge was assessed as non-additional. Internalization was found to occur by endocytosis and diffusion through the membrane. A preliminary transfection study indicated the potential of TiONts as a nanocarrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.