Summary
The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Further, our data support that CTCF mediates transcriptional insulator function through enhancer-blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding these results provide new fundamental insights into the rules governing mammalian genome organization.
Oncogenes are activated through well-known chromosomal alterations, including gene fusion, translocation and focal amplification. Recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods led us to investigate whether proto-oncogenes occur within these structures and if oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T-cell acute lymphoblastic leukemia (T-ALL), and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in non-malignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.
Highlights d Genome organization is highly variable between individual cells d Physical interaction between any two genome regions is a relatively rare event d The structure of TADs is malleable and variable between individual cells d The interactions of two alleles in the same nucleus are independent of each other
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.