International audience[1] The 1997 Boxing Day collapse, a remarkable feature of the ongoing eruption of Soufrière Hills on Montserrat, has prompted new interest in the study of volcano stability in the Lesser Antilles. Building on a few cases documented in the literature, we have now identified at least 47 flank collapse events on volcanoes of the Caribbean arc where this type of behavior is characteristic and repetitive. About 15 events occurred on active volcanoes within the last 12,000 years. In the northern part of the arc, flank collapses are repetitive, do not exceed 1 km 3 in volume, occur in all directions, and are promoted by intense hydrothermal alteration and well-developed fracturing of the summit part of the edifices. In contrast, infrequent but large sector collapses, with volumes up to tens of km 3 , are typical of the southern volcanoes. They are always directed to the west as a result of the high overall slopes of the islands toward the deep back-arc Grenada Basin. Because Caribbean islands are small, a large part of the resulting debris avalanches have flowed into the sea thus contributing voluminous and sudden inputs of volcaniclastic sediments to the Grenada Basin. Deposits from such submarine flows have been identified during the recent AGUADOMAR and CARAVAL oceanographic cruises and traced to their source structures on land. Edifice collapses have a major influence on subsequent volcanic activity but also are of high concern because of their tsunamigenic potential
[1] A horseshoe-shaped structure already identified on the southwestern flank of Montagne Pelée (Martinique, Lesser Antilles arc) was previously interpreted as resulting of a flank collapse event, but no debris avalanche deposits were observed at the time. New offshore high-resolution bathymetry and geophysical data (Aguadomar cruise; December 1998 to January 1999; R/V L'Atalante) lead us to identify three debris avalanche deposits on the submarine western flank of Montagne Pelée extending down to the Grenada Basin. They display morphological fronts and hummocky morphology on bathymetric data, speckled pattern on backscatter data and hyperbolic facies on 3.5 kHz and seismic profiles. New on-land geological studies lead us to identify two other horseshoe-shaped structures on the same flank of the volcano. The three submarine deposits have been traced back to the structures identified on land, which confirms the occurrence of repeated flank collapse events during the evolution of Montagne Pelée. The ages of the last two events are estimated at $9 ka and $25 ka on the basis of 14 C and 238 U/
230Th dates. Every flank collapse produced debris avalanches which flowed down to the Caribbean Sea. We propose that the repeated instabilities are due to the large asymmetry of the island with western aerial and submarine slopes steeper than the eastern slopes. The asymmetry results from progressive loading by accumulation of volcanic products on the western slopes of the volcano and development of long-term gravitational instabilities. Meteoric and hydrothermal fluid circulation on the floor of the second flank collapse structure also creates a weakened hydrothermalized area, which favors the recurrence of flank collapses.INDEX TERMS: 3045 Marine Geology and Geophysics: Seafloor morphology and bottom photography; 8414 Volcanology: Eruption mechanisms; 8499 Volcanology: General or miscellaneous;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.