Eukaryotic ionotropic glutamate receptor subunits possess a large N-terminal domain (NTD) distinct from the neighboring agonistbinding domain. In NMDA receptors, the NTDs of NR2A and NR2B form modulatory domains binding allosteric inhibitors. Despite a high sequence homology, these two domains have been shown to bind two ligands of strikingly different chemical nature. Whereas the NTD of NR2A binds zinc with high (nanomolar) affinity, the NTD of NR2B binds the synthetic neuroprotectant ifenprodil and its derivatives. Using both NTD-mutated/deleted receptors and isolated NTDs, we now show that the NTD of NR2B, in contrast to NR2C and NR2D, also binds zinc, but with a lower affinity. Furthermore, we present evidence that zinc and ifenprodil compete for an overlapping binding site. This modulatory binding site accounts for the submicromolar zinc inhibition of NR1/NR2B receptors. Given that zinc is accumulated and released at many glutamatergic synapses in the CNS, these findings suggest that zinc is the endogenous ligand of the NTD of both NR2A and NR2B, the two major NR2 subunits. Thus, NMDA receptors contain zinc sensors capable of detecting extracellular zinc over a wide concentration range depending on their NR2 subunit composition. The coexistence of subunit-specific zinc-binding sites of high (nanomolar) and low (micromolar) affinity on NMDA receptors raises the possibility that zinc exerts both a tonic and a phasic control of membrane excitability.
Ionotropic glutamate receptors (iGluRs) bind agonists in a domain that has been crystallized and shown to have a bilobed structure. Eukaryotic iGluRs also possess a second extracellular N-terminal domain related to the bacterial periplasmic binding protein LIVBP. In NMDA receptors, the high-affinity Zn inhibition is eliminated by mutations in the LIVBP-like domain of the NR2A subunit. Using LIVBP structure, we have modeled this domain as two lobes connected by a hinge and show that six residues controlling Zn inhibition form two clusters facing each other across a central cleft. Upon Zn binding the two lobes close tightly around the divalent cation. Thus, the extracellular region of NR2A consists of a tandem of Venus flytrap domains, one binding the agonist and the other a modulatory ligand. Such a functional organization may apply to other eukaryotic iGluRs.
Ionotropic glutamate receptor (iGluR) subunits contain a large N-terminal domain (NTD) that precedes the agonist-binding domain (ABD) and participates in subunit oligomerization. In NMDA receptors (NMDARs), the NTDs of NR2A and NR2B subunits also form binding sites for the endogenous inhibitor Zn(2+) ion. Although these allosteric sites have been characterized in detail, the molecular mechanisms by which the NTDs communicate with the rest of the receptor to promote its inhibition remain unknown. Here, we identify the ABD dimer interface as a major structural determinant that permits coupling between the NTDs and the channel gate. The strength of this interface also controls proton inhibition, another form of allosteric modulation of NMDARs. Conformational rearrangements at the ABD dimer interface thus appear to be a key mechanism conserved in all iGluR subfamilies, but have evolved to fulfill different functions: fast desensitization at AMPA and kainate receptors, allosteric inhibition at NMDARs.
NMDA receptors are allosterically inhibited by Zn2+ ions in a voltage-independent manner. The apparent affinity for Zn2+ of the heteromeric NMDA receptors is determined by the subtype of NR2 subunit expressed, with NR2A-containing receptors being the most sensitive (IC50, approximately 20 nM) and NR2C-containing receptors being the least sensitive (IC50, approximately 30 microM). Using chimeras constructed from these two NR2 subtypes, we show that the N-terminal LIVBP-like domain of the NR2A subunit controls the high-affinity Zn2+ inhibition. Mutations at four residues in this domain markedly reduce Zn2+ affinity (by up to >500-fold) without affecting either receptor activation by glutamate and glycine or inhibition by extracellular protons and Ni2+ ions, indicating that these residues most likely participate in high-affinity Zn2+ binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.