Angiogenic factors exert protective effects on the lung. To investigate the effect of VEGF-B, a factor coexpressed in the lung with VEGF-A, we assessed chronic hypoxic pulmonary hypertension in VEGF-B knockout mice (VEGF-B-/-) and in rats with lung overexpression of VEGF-B induced by adenovirus transfer. No significant difference in pulmonary hemodynamics, right ventricular hypertrophy, distal vessel muscularization, or vascular density was found between VEGF-B-/- and control mice after 3 wk of hypoxia. When overexpressed, VEGF-B(167) or VEGF-B(186) had protective effects similar to those of human VEGF-A(165). Lung endothelial nitric oxide synthase (eNOS) expression was increased by 5 days of hypoxia or VEGF-A adenovirus vector (Ad.VEGF-A) overexpression, whereas VEGF-B(167) or VEGF-B(186) had no effect. With hypoxia or normoxia, the wet-to-dry lung weight ratio was increased 5 days after Ad.VEGF-A administration compared with control (Ad.nul), Ad.VEGF-B(167), or Ad.VEGF-B(186). Endogenous VEGF-B does not counteract the development of hypoxic pulmonary hypertension. However, when overexpressed in the lung, VEGF-B can be as potent as VEGF-A in attenuating pulmonary hypertension, although it has no effect on eNOS expression or vascular permeability.
The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.