Astrocytomas are among the most common brain tumors that are usually fatal in their malignant form. They appear to progress without significant impedance from the immune system, despite the presence of intratumoral T cell infiltration. To date, this has been thought to be the result of T cell immunosuppression induced by astrocytoma-derived cytokines. Here, we propose that cell contact-mediated events also play a role, since we demonstrate the in vivo expression of
Sympathetic neurons undergo programmed cell death (PCD) upon deprivation of nerve growth factor (NGF). PCD of neurons is blocked by inhibitors of the interleukin‐1beta converting enzyme (ICE)/Ced‐3‐like cysteine protease, indicating involvement of this class of proteases in the cell death programme. Here we demonstrate that the proteolytic activities of the proteasome are also essential in PCD of neurons. Nanomolar concentrations of several proteasome inhibitors, including the highly selective inhibitor lactacystin, not only prolonged survival of NGF‐deprived neurons but also prevented processing of poly(ADP‐ribose) polymerase which is known to be cleaved by an ICE/Ced‐3 family member during PCD. These results demonstrate that the proteasome is a key regulator of neuronal PCD and that, within this process, it is involved upstream of proteases of the ICE/Ced‐3 family. This order of events was confirmed in macrophages where lactacystin inhibited the proteolytic activation of precursor ICE and the subsequent generation of active interleukin‐1beta.
Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8+ T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t1/2 of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8+ T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.
Anaplastic astrocytoma and glioblastoma are frequent and malignant brain tumors that are infiltrated by T lymphocytes. Whether these cells result from non-specific inflammation following blood-brain barrier disruption or an antigen-driven specific immune response is unknown. In this study, an in-depth characterization of TCR diversity in tumor and blood RNA biopsies was performed in a series of 16 patients with malignant astrocytoma. Whilst there was no obvious restriction of the AV and BV gene segment usage, complementarity-determining region 3 size analysis and sequencing of amplified TCR transcripts revealed multiple T cell oligoclonal expansions in all astrocytomas analyzed. Unique T cell clones were present in different adjacent areas of a given tumor, but never detected in the blood. Quantification of the number of TCR clonal transcripts per microg of tumor RNA indicated that certain T cell clonal expansions may represent at least 300 cells/10(6) tumor cells. Furthermore, we demonstrated that the in vivo expanded clones were almost exclusively confined to the CD8(+) subset. Overall, these data suggest that spontaneous antigen-driven immune responses may be elicited against human astrocytoma despite the immunosuppressive microenvironment generated by the brain and the tumor itself. However, the ultimate failure of the immune system to control tumor growth could be the consequence of a deficient CD4 T(h) component of the response. This observation could have important consequences for the development of immunotherapies for astrocytoma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.