Sulfated laminarin (PS3) has been shown previously to be an elicitor of plant defense reactions in tobacco and Arabidopsis and to induce protection against tobacco mosaic virus. Here, we have demonstrated the efficiency of PS3 in protecting a susceptible grapevine cultivar (Vitis vinifera cv. Marselan) against downy mildew (Plasmopara viticola) under glasshouse conditions. This induced resistance was associated with potentiated H2O2 production at the infection sites, upregulation of defense-related genes, callose and phenol depositions, and hypersensitive response-like cell death. Interestingly, similar responses were observed following P. viticola inoculation in a tolerant grapevine hybrid cultivar (Solaris). A pharmacological approach led us to conclude that both callose synthesis and jasmonic acid pathway contribute to PS3-induced resistance.
Rhamnolipids produced by the bacteria Pseudomonas aeruginosa are known as very efficient biosurfactant molecules. They are used for a wide range of industrial applications, especially in food, cosmetics and pharmaceutical formulations as well as in bioremediation of pollutants. In this paper, the role of rhamnolipids as novel molecules triggering defence responses and protection against the fungus Botrytis cinerea in grapevine is presented. The effect of rhamnolipids was assessed in grapevine using cell suspension cultures and vitro-plantlets. Ca 2+ influx, mitogenactivated protein kinase activation and reactive oxygen species production form part of early signalling events leading from perception of rhamnolipids to the induction of plant defences that include expression of a wide range of defence genes and a hypersensitive response (HR)-like response. In addition, rhamnolipids potentiated defence responses induced by the chitosan elicitor and by the culture filtrate of B. cinerea. We also demonstrated that rhamnolipids have direct antifungal properties by inhibiting spore germination and mycelium growth of B. cinerea. Ultimately, rhamnolipids efficiently protected grapevine against the fungus.We propose that rhamnolipids are acting as microbeassociated molecular patterns (MAMPs) in grapevine and that the combination of rhamnolipid effects could participate in grapevine protection against grey mould disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.