Earliness is one of the most important adaptation traits in plant breeding. Our purpose was to identify the genome regions of bread wheat involved in the control of earliness and its three components: photoperiod sensitivity (PS), vernalization requirement (VR) and intrinsic earliness (IE). A QTL meta-analysis was carried out to examine the replicability of QTL across 13 independent studies and to propose meta-QTL (MQTL). Initial QTL were projected on a recent consensus map (2004). Quality criteria were proposed to assess the reliability of this projection. These criteria were based on the distances between markers in the QTL regions. Chromosomes of groups 2 and 5 had a greater incidence on earliness control as they carry the known, major genes Ppd and Vrn. Other chromosome regions played an intermediate role in earliness control: 4A [heading date (HD) Meta-QTL], 4B (HD MQTL), 2B (VR MQTL) and 5B (IE MQTL). Markers at this four MQTL should prove helpful in marker-assisted selection, to better control earliness.
An understanding of the genetic determinism of frost tolerance is a prerequisite for the development of frost tolerant cultivars for cold northern areas. In legumes, it is not known to which extent vernalization requirement or photoperiod responsiveness are necessary for the development of frost tolerance. In pea (Pisum sativum L.) however, the flowering locus Hr is suspected to influence winter frost tolerance by delaying floral initiation until after the main winter freezing periods have passed. The objective of this study was to dissect the genetic determinism of frost tolerance in pea by QTL analysis and to assess the genetic linkage between winter frost tolerance and the Hr locus. A population of 164 recombinant inbred lines (RILs), derived from the cross Champagne x Terese was evaluated both in the greenhouse and in field conditions to characterize the photoperiod response from which the allele at the Hr locus was inferred. In addition, the population was also assessed for winter frost tolerance in 11 field conditions. Six QTL were detected, among which three were consistent among the different experimental conditions, confirming an oligogenic determinism of frost tolerance in pea. The Hr locus was found to be the peak marker for the highest explanatory QTL of this study. This result supports the hypothesis of the prominent part played by the photoperiod responsiveness in the determinism of frost tolerance for this species. The consistency of three QTL makes these positions interesting targets for marker-assisted selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.