The aggregation cascade and peptide-membrane interactions of the amyloid β-peptide (Aβ) have been implicated as toxic events in the development and progression of Alzheimer's disease. Aβ42 forms oligomers and ultimately plaques, and it has been hypothesized that these oligomeric species are the main toxic species contributing to neuronal cell death. To better understand oligomerization events and subsequent oligomer-membrane interactions of Aβ42, we performed atomistic molecular-dynamics (MD) simulations to characterize both interpeptide interactions and perturbation of model membranes by the peptides. MD simulations were utilized to first show the formation of a tetramer unit by four separate Aβ42 peptides. Aβ42 tetramers adopted an oblate ellipsoid shape and showed a significant increase in β-strand formation in the final tetramer unit relative to the monomers, indicative of on-pathway events for fibril formation. The Aβ42 tetramer unit that formed in the initial simulations was used in subsequent MD simulations in the presence of a pure POPC or cholesterol-rich raft model membrane. Tetramer-membrane simulations resulted in elongation of the tetramer in the presence of both model membranes, with tetramer-raft interactions giving rise to the rearrangement of key hydrophobic regions in the tetramer and the formation of a more rod-like structure indicative of a fibril-seeding aggregate. Membrane perturbation by the tetramer was manifested in the form of more ordered, rigid membranes, with the pure POPC being affected to a greater extent than the raft membrane. These results provide critical atomistic insight into the aggregation pathway of Aβ42 and a putative toxic mechanism in the pathogenesis of Alzheimer's disease.
The COVID-19 pandemic underscores the need to understand better animal-to-human transmission of coronaviruses and adaptive evolution within new hosts. We scanned over 182,000 SARS-CoV-2 genomes for selective sweep signatures and found a distinct footprint of positive selection located around a non-synonymous change (A1114G; T372A) within the Spike protein receptor-binding domain (RBD), predicted to remove glycosylation and increase binding to human ACE2 (hACE2), the cellular receptor. This change is present in all human SARS-CoV-2 sequences but not closely related viruses from bats and pangolins. As predicted, T372A RBD bound hACE2 with higher affinity in experimental binding assays. We engineered the reversion mutant (A372T) and found that A372 (WT-SARS-CoV-2) enhanced replication in human lung cells relative to its putative ancestral variant (T372), an effect which was 20x greater than the well-known D614G mutation. Our findings suggest that this mutation likely contributed to SARS-CoV-2’s emergence from animal reservoirs or enabled sustained human-to-human transmission.
Macromolecular function arises from structure, and many diseases are associated with misfolding of proteins. Molecular simulation methods can augment experimental techniques to understand misfolding and aggregation pathways with atomistic resolution, but the reliability of these predictions is a function of the parameters used for the simulation. There are many biomolecular force fields available, but most are validated using stably folded structures. Here, we present the results of molecular dynamics simulations on the intrinsically disordered amyloid β-peptide (Aβ), whose misfolding and aggregation give rise to the symptoms of Alzheimer's disease. Because of the link between secondary structure changes and pathology, being able to accurately model the structure of Aβ would greatly improve our understanding of this disease, and it may facilitate application of modeling approaches to other protein misfolding disorders. To this end, we compared five popular atomistic force fields (AMBER03, CHARMM22 + CMAP, GROMOS96 53A6, GROMOS96 54A7, and OPLS-AA) to determine which could best model the structure of Aβ. By comparing secondary structure content, NMR shifts, and radius of gyration to available experimental data, we conclude that AMBER03 and CHARMM22 + CMAP over-stabilize helical structure within Aβ, with CHARMM22 + CMAP also producing elongated Aβ structures, in conflict with experimental findings. OPLS-AA, GROMOS96 53A6, and GROMOS96 54A7 produce very similar results in terms of helical and β-strand content, calculated NMR shifts, and radii of gyration that agree well with experimental data.
BackgroundThe ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual curation in archaea, even in pathways that have been well-studied in other domains.ResultsWe searched the Integrated Microbial Genome system (IMG) for the 17 distinct genes involved in the 11 steps of de novo purine biosynthesis in 65 sequenced archaea, finding 738 predicted proteins with sequence similarity to known purine biosynthesis enzymes. Each sequence was manually inspected for the presence of active site residues and other residues known or suspected to be required for function.Many apparently purine-biosynthesizing archaea lack evidence for a single enzyme, either glycinamide ribonucleotide formyltransferase or inosine monophosphate cyclohydrolase, suggesting that there are at least two more gene variants in the purine biosynthetic pathway to discover. Variations in domain arrangement of formylglycinamidine ribonucleotide synthetase and substantial problems in aminoimidazole carboxamide ribonucleotide formyltransferase and inosine monophosphate cyclohydrolase assignments were also identified.Manual curation revealed some overly specific annotations in the IMG gene product name, with predicted proteins without essential active site residues assigned product names implying enzymatic activity (21 proteins, 2.8% of proteins inspected) or Enzyme Commission (E. C.) numbers (57 proteins, 7.7%). There were also 57 proteins (7.7%) assigned overly generic names and 78 proteins (10.6%) without E.C. numbers as part of the assigned name when a specific enzyme name and E. C. number were well-justified.ConclusionsThe patchy distribution of purine biosynthetic genes in archaea is consistent with a pathway that has been shaped by horizontal gene transfer, duplication, and gene loss. Our results indicate that manual curation can improve upon automated annotation for a small number of automatically-annotated proteins and can reveal a need to identify further pathway components even in well-studied pathways.ReviewersThis article was reviewed by Dr. Céline Brochier-Armanet, Dr Kira S Makarova (nominated by Dr. Eugene Koonin), and Dr. Michael Galperin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.