Key Points CD161 defines proinflammatory FoxP3+ cells that have classic Treg signatures, yet share effector T-cell properties. CD161+ Treg proinflammatory phenotype is stable upon Treg expansion and thus should be considered in therapeutic strategies using Treg.
ObjectiveGranulocyte–macrophage colony stimulating factor (GM-CSF) is a potent inflammatory mediator that is responsible for recruitment and activation of innate immune cells. Recent data from murine studies have identified Th17 cells as a key source of GM-CSF and suggest that T cell–derived GM-CSF is instrumental in the induction of autoimmune disease. The present study was undertaken to analyze the expression of T cell–derived GM-CSF in the joints of patients with juvenile idiopathic arthritis (JIA) and to investigate the differentiation of Th17 cells and how this relates to GM-CSF+ T helper cells.MethodsSynovial fluid (SF) and peripheral blood (PB) samples from 24 patients with JIA were analyzed, by flow cytometry and reverse transcription–polymerase chain reaction, for expression of GM-CSF and the Th17 marker CD161. A cytokine capture assay was used to purify Th17 cells and test the plasticity of cytokine production in response to interleukin-12 (IL-12) and IL-23.ResultsThe frequency of GM-CSF–producing T helper cells was significantly enriched in SF mononuclear cells compared to PB mononuclear cells from the patients with JIA (24.1% of CD4+ T cells versus 2.9%) and closely correlated with the erythrocyte sedimentation rate (r2 = 0.91, P < 0.001). Synovial GM-CSF+ T cells were predominantly CD161+ and coexpressed interferon-γ (IFNγ), but not IL-17. Culture of Th17 cells in the presence of IL-12 led to rapid up-regulation of GM-CSF and IFNγ, recapitulating the phenotype of GM-CSF–expressing cells within the joint.ConclusionOur results identify a novel outcome of Th17 plasticity in humans that may account for the enrichment of GM-CSF–expressing T cells in the joints of patients with JIA. The association of GM-CSF expression with systemic inflammation highlights the potential role of Th17-related cytokines in the pathology of JIA.
Type 1 diabetes (T1D) is caused by immune-mediated destruction of insulin-producing β-cells. Insufficient control of autoreactive T cells by regulatory T cells (Tregs) is believed to contribute to disease pathogenesis, but changes in Treg function are difficult to quantify because of the lack of Treg-exclusive markers in humans and the complexity of functional experiments. We established a new way to track Tregs by using a gene signature that discriminates between Tregs and conventional T cells regardless of their activation states. The resulting 31-gene panel was validated with the NanoString nCounter platform and then measured in sorted CD4+CD25hiCD127lo Tregs from children with T1D and age-matched control subjects. By using biomarker discovery analysis, we found that expression of a combination of six genes, including TNFRSF1B (CD120b) and FOXP3, was significantly different between Tregs from subjects with new-onset T1D and control subjects, resulting in a sensitive (mean ± SD 0.86 ± 0.14) and specific (0.78 ± 0.18) biomarker algorithm. Thus, although the proportion of Tregs in peripheral blood is similar between children with T1D and control subjects, significant changes in gene expression can be detected early in disease process. These findings provide new insight into the mechanisms underlying the failure to control autoimmunity in T1D and might lead to a biomarker test to monitor Tregs throughout disease progression.
CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.