Inkjet printing offers a low-cost, high-throughput avenue for producing functional organic materials through rapid translation of desktop discoveries to industrial roll-to-roll processes. Here, we report a simple, but effective strategy to control droplet coalescence during inkjet printing, as a major variable, to tailor the nanoscale morphology of organic composite materials produced upon evaporation of all-liquid inks. During deposition, the spacing between ink droplets was controlled to systematically vary the extent of droplet coalescence. Our results show that decreasing coalescence increased the solvent evaporation rate, supersaturation of the solutes, and nucleation density of the precipitating organic crystals. This phenomenon was utilized to tailor the average size of pentaerythritol tetranitrate (PETN) crystals dispersed in an adhesive binder matrix from ~0.2 to upwards of 100 μm. The results suggest that controlling the extent of droplet coalescence can be used as an effective means to tailor the composite morphology of printed organic materials at the nanoscale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.