Psychologists should be able to falsify predictions. A common prediction in psychological research is that a nonzero effect exists in the population. For example, one might predict that American Asian women primed with their Asian identity will perform better on a math test compared with women who are primed with their female identity. To be able to design a study that allows for strong inferences (Platt, 1964), it is important to specify which test result would falsify the hypothesis in question. Equivalence testing can be used to test whether an observed effect is surprisingly small, assuming that a meaningful effect exists in the population (see, e.g.,
Psychologists must be able to test both for the presence of an effect and for the absence of an effect. In addition to testing against zero, researchers can use the Two One-Sided Tests (TOST) procedure to test for equivalence and reject the presence of a smallest effect size of interest (SESOI). TOST can be used to determine if an observed effect is surprisingly small, given that a true effect at least as large as the SESOI exists. We explain a range of approaches to determine the SESOI in psychological science, and provide detailed examples of how equivalence tests should be performed and reported. Equivalence tests are an important extension of statistical tools psychologists currently use, and enable researchers to falsify predictions about the presence, and declare the absence, of meaningful effects.
Replication—an important, uncommon, and misunderstood practice—is gaining appreciation in psychology. Achieving replicability is important for making research progress. If findings are not replicable, then prediction and theory development are stifled. If findings are replicable, then interrogation of their meaning and validity can advance knowledge. Assessing replicability can be productive for generating and testing hypotheses by actively confronting current understandings to identify weaknesses and spur innovation. For psychology, the 2010s might be characterized as a decade of active confrontation. Systematic and multi-site replication projects assessed current understandings and observed surprising failures to replicate many published findings. Replication efforts highlighted sociocultural challenges such as disincentives to conduct replications and a tendency to frame replication as a personal attack rather than a healthy scientific practice, and they raised awareness that replication contributes to self-correction. Nevertheless, innovation in doing and understanding replication and its cousins, reproducibility and robustness, has positioned psychology to improve research practices and accelerate progress. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
For almost half a century, Paul Meehl educated psychologists about how the mindless use of null-hypothesis significance tests made research on theories in the social sciences basically uninterpretable. In response to the replication crisis, reforms in psychology have focused on formalizing procedures for testing hypotheses. These reforms were necessary and influential. However, as an unexpected consequence, psychological scientists have begun to realize that they may not be ready to test hypotheses. Forcing researchers to prematurely test hypotheses before they have established a sound “derivation chain” between test and theory is counterproductive. Instead, various nonconfirmatory research activities should be used to obtain the inputs necessary to make hypothesis tests informative. Before testing hypotheses, researchers should spend more time forming concepts, developing valid measures, establishing the causal relationships between concepts and the functional form of those relationships, and identifying boundary conditions and auxiliary assumptions. Providing these inputs should be recognized and incentivized as a crucial goal in itself. In this article, we discuss how shifting the focus to nonconfirmatory research can tie together many loose ends of psychology’s reform movement and help us to develop strong, testable theories, as Paul Meehl urged.
Researchers often conclude an effect is absent when a null-hypothesis significance test yields a non-significant p-value. However, it is neither logically nor statistically correct to conclude an effect is absent when a hypothesis test is not significant. We present two methods to evaluate the presence or absence of effects: Equivalence testing (based on frequentist statistics) and Bayes factors (based on Bayesian statistics). In four examples from the gerontology literature we illustrate different ways to specify alternative models that can be used to reject the presence of a meaningful or predicted effect in hypothesis tests. We provide detailed explanations of how to calculate, report, and interpret Bayes factors and equivalence tests. We also discuss how to design informative studies that can provide support for a null model or for the absence of a meaningful effect. The conceptual differences between Bayes factors and equivalence tests are discussed, and we also note when and why they might lead to similar or different inferences in practice. It is important that researchers are able to falsify predictions or can quantify the support for predicted null-effects. Bayes factors and equivalence tests provide useful statistical tools to improve inferences about null effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.