Localized scleroderma (LS) is a complex disease characterized by a mixture of inflammation and fibrosis of the skin that, especially in the pediatric population, also affects extracutaneous tissues ranging from muscle to the central nervous system. Although developmental origins have been hypothesized, evidence points to LS as a systemic autoimmune disorder, as there is a strong correlation to family history of autoimmune disease, the presence of shared HLA types with rheumatoid arthritis, high frequency of auto-antibodies, and elevated circulating chemokines and cytokines associated with T-helper cell, IFNγ, and other inflammatory pathways. This inflammatory phenotype of the peripheral blood is reflected in the skin via microarray, RNA Sequencing and tissue staining. Research is underway to identify the key players in the pathogenesis of LS, but close approximation of inflammatory lymphocytic and macrophage infiltrate with collagen and fibroblasts deposition supports the notion that LS is a disease of inflammatory driven fibrosis. The immune system is dynamic and undergoes changes during childhood, and we speculate on how the unique features of the immune system in childhood could potentially contribute to some of the differences in LS between children and adults. Interestingly, the immune phenotype in pediatric LS resembles to some extent the healthy adult cellular phenotype, possibly supporting accelerated maturation of the immune system in LS. We discuss future directions in better understanding the pathophysiology of and how to better treat pediatric LS.
Fetal cells derived from pregnancy can persist in a woman's blood and tissues for decades and have been implicated in the pathogenesis of autoimmune disease. Transplantation studies based on donor sex mismatch suggest that circulating stem cells can lead to liver regeneration with donor-derived hepatocytes. However, male cells in female liver could derive from pregnancy. We investigated male cells in liver biopsies from women with sons and asked whether they were hematopoietic cells or hepatocytes. Fluorescence in situ hybridization for X-and Y-chromosomes with concomitant immunohistochemistry was employed to study 28 female liver biopsies: 14 with the autoimmune disease primary biliary cirrhosis (PBC), eight with Hepatitis C, and six with other diseases. Total male cells and those expressing hematopoietic (CD45) or hepatocyte (CAM-5.2) markers were quantified. None of the male cells were hematopoietic in origin, as shown by lack of CD45 expression. Instead, male cells with hepatocyte morphology expressing the hepatocyte marker CAM 5.2 were found in 25% of all biopsies (36% of PBC and 14% of others). Overall, male cells were found in 36% of female liver biopsies. Of the PBC livers 43% had male cells compared to 25% of Hepatitis C biopsies and 33% of others. There was a trend toward increased numbers of male cells in PBC compared to others (mean 1 per 30 000 host cells vs 0.17 in Hepatitis C and 0.35 in others). Thus, male cells found in livers of women with sons include cells that express hepatocyte antigens. Therefore, transplantation and stem cell differentiation studies using sex difference to conclude that donor cells regenerate liver may be confounded by fetal microchimerism. Whether fetal cells play a role in autoimmune diseases like PBC merits further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.