Mutation is the source of genetic variation and fuels biological evolution. Many mutations first arise as DNA replication errors. These errors subsequently evade correction by cellular DNA repair, for example, by the well-known DNA mismatch repair (MMR) mechanism. Here, we determine the genome-wide effects of MMR on mutation. We first identify almost 9000 mutations accumulated over five generations in eight MMR-deficient mutation accumulation (MA) lines of the model plant species, We then show that MMR deficiency greatly increases the frequency of both smaller-scale insertions and deletions (indels) and of single-nucleotide variant (SNV) mutations. Most indels involve A or T nucleotides and occur preferentially in homopolymeric (poly A or poly T) genomic stretches. In addition, we find that the likelihood of occurrence of indels in homopolymeric stretches is strongly related to stretch length, and that this relationship causes ultrahigh localized mutation rates in specific homopolymeric stretch regions. For SNVs, we show that MMR deficiency both increases their frequency and changes their molecular mutational spectrum, causing further enhancement of the GC to AT bias characteristic of organisms with normal MMR function. Our final genome-wide analyses show that MMR deficiency disproportionately increases the numbers of SNVs in genes, rather than in nongenic regions of the genome. This latter observation indicates that MMR preferentially protects genes from mutation and has important consequences for understanding the evolution of genomes during both natural selection and human tumor growth.
Sodium (Na) is ubiquitous in soils, and is transported to plant shoots via transpiration through xylem elements in the vascular tissue. However, excess Na is damaging. Accordingly, control of xylem-sap Na concentration is important for maintenance of shoot Na homeostasis, especially under Na stress conditions. Here we report that shoot Na homeostasis of Arabidopsis thaliana plants grown in saline soils is conferred by reactive oxygen species (ROS) regulation of xylem-sap Na concentrations. We show that lack of A. thaliana respiratory burst oxidase protein F (AtrbohF; an NADPH oxidase catalysing ROS production) causes hypersensitivity of shoots to soil salinity. Lack of AtrbohF-dependent salinity-induced vascular ROS accumulation leads to increased Na concentrations in root vasculature cells and in xylem sap, thus causing delivery of damaging amounts of Na to the shoot. We also show that the excess shoot Na delivery caused by lack of AtrbohF is dependent upon transpiration. We conclude that AtrbohF increases ROS levels in wild-type root vasculature in response to raised soil salinity, thereby limiting Na concentrations in xylem sap, and in turn protecting shoot cells from transpiration-dependent delivery of excess Na.
BackgroundMartian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth.Methodology and Principal FindingsDisabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO4·7H2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO4·7H2O (magnesium sulfate) stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO4·7H2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment.Conclusions/SignificanceThe results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster the development of Mars soil-compatible plants by showing that cax1 mutants exhibit partial tolerance to magnesium sulfate, and by elucidating a small subset (500 vs. >10,000) of candidate genes for mutation or metabolic engineering that will enhance tolerance to magnesium sulfate soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.