Assessment of genomic DNA sequence variation and genotype calling in autotetraploids implies the ability to distinguish among five possible alternative allele copy number states. This study demonstrates the accuracy of genotyping-by-sequencing (GBS) of a large collection of autotetraploid potato cultivars using next-generation sequencing. It is still costly to reach sufficient read depths on a genome wide scale, across the cultivated gene pool. Therefore, we enriched cultivar-specific DNA sequencing libraries using an in-solution hybridisation method (SureSelect). This complexity reduction allowed to confine our study to 807 target genes distributed across the genomes of 83 tetraploid cultivars and one reference (DM 1–3 511). Indexed sequencing libraries were paired-end sequenced in 7 pools of 12 samples using Illumina HiSeq2000. After filtering and processing the raw sequence data, 12.4 Gigabases of high-quality sequence data was obtained, which mapped to 2.1 Mb of the potato reference genome, with a median average read depth of 63× per cultivar. We detected 129,156 sequence variants and genotyped the allele copy number of each variant for every cultivar. In this cultivar panel a variant density of 1 SNP/24 bp in exons and 1 SNP/15 bp in introns was obtained. The average minor allele frequency (MAF) of a variant was 0.14. Potato germplasm displayed a large number of relatively rare variants and/or haplotypes, with 61% of the variants having a MAF below 0.05. A very high average nucleotide diversity (π = 0.0107) was observed. Nucleotide diversity varied among potato chromosomes. Several genes under selection were identified. Genotyping-by-sequencing results, with allele copy number estimates, were validated with a KASP genotyping assay. This validation showed that read depths of ∼60–80× can be used as a lower boundary for reliable assessment of allele copy number of sequence variants in autotetraploids. Genotypic data were associated with traits, and alleles strongly influencing maturity and flesh colour were identified.
To study cell wall assembly, a simple screening method was devised for isolating cell wall mutants. Mutagenized cells were screened for hypersensitivity to Calcofluor White, which interferes with cell wall assembly. The rationale is that Calcofluor White amplifies the effect of cell wall mutations. As a result, the cells stop growing at lower concentrations of Calcofluor White than cells with normal cell wall. In this way, 63 Calcofluor White-hypersensitive (cwh), monogenic mutants were obtained, ordered into 53 complementation groups. The mannose/glucose ratios of the mutant cell walls varied from 0.15 to 3.95, while wild-type cell walls contained about equal amounts of mannose and glucose. This indicates that both low-mannose and low-glucose cell wall mutants had been obtained. Further characterization showed the presence of three low-mannose cell wall mutants with a mnn9-like phenotype, affected, however, in different genes. In addition, four new killer-resistant (kre) mutants were found, which are presumably affected in the synthesis of beta 1,6-glucan. Most low-glucose cell wall mutants were not killer resistant, indicating that they might be defective in the synthesis of beta 1,3-glucan. Eleven cwh mutants were found to be hypersensitive to papulacandin B, which is known to interfere with beta 1,3-glucan synthesis, and four cwh mutants were temperature-sensitive and lysed at the restrictive temperature. Finally, nine cwh mutants were hypersensitive to caffeine, suggesting that these were affected in signal transduction related to cell wall assembly.
Powdery mildew disease caused by Leveillula taurica is a serious fungal threat to greenhouse tomato and pepper production. In contrast to most powdery mildew species which are epiphytic, L. taurica is an endophytic fungus colonizing the mesophyll tissues of the leaf. In barley, Arabidopsis, tomato and pea, the correct functioning of specific homologues of the plant Mlo gene family has been found to be required for pathogenesis of epiphytic powdery mildew fungi. The aim of this study was to investigate the involvement of the Mlo genes in susceptibility to the endophytic fungus L. taurica. In tomato (Solanum lycopersicum), a loss-of-function mutation in the SlMlo1 gene results in resistance to powdery mildew disease caused by Oidium neolycopersici. When the tomato Slmlo1 mutant was inoculated with L. taurica in this study, it proved to be less susceptible compared to the control, S. lycopersicum cv. Moneymaker. Further, overexpression of SlMlo1 in the tomato Slmlo1 mutant enhanced susceptibility to L. taurica. In pepper, the CaMlo2 gene was isolated by applying a homology-based cloning approach. Compared to the previously identified CaMlo1 gene, the CaMlo2 gene is more similar to SlMlo1 as shown by phylogenetic analysis, and the expression of CaMlo2 is up-regulated at an earlier time point upon L. taurica infection. However, results of virus-induced gene silencing suggest that both CaMlo1 and CaMlo2 may be involved in the susceptibility of pepper to L. taurica. The fact that overexpression of CaMlo2 restored the susceptibility of the tomato Slmlo1 mutant to O. neolycopersici and increased its susceptibility to L. taurica confirmed the role of CaMlo2 acting as a susceptibility factor to different powdery mildews, though the role of CaMlo1 as a co-factor for susceptibility cannot be excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.