The human occupation history of Southeast Asia (SEA) remains heavily debated. Current evidence suggests that SEA was occupied by Hòabìnhian hunter-gatherers until ~4000 years ago, when farming economies developed and expanded, restricting foraging groups to remote habitats. Some argue that agricultural development was indigenous; others favor the "two-layer" hypothesis that posits a southward expansion of farmers giving rise to present-day Southeast Asian genetic diversity. By sequencing 26 ancient human genomes (25 from SEA, 1 Japanese Jōmon), we show that neither interpretation fits the complexity of Southeast Asian history: Both Hòabìnhian hunter-gatherers and East Asian farmers contributed to current Southeast Asian diversity, with further migrations affecting island SEA and Vietnam. Our results help resolve one of the long-standing controversies in Southeast Asian prehistory.
Stable carbon and nitrogen isotope ratios of collagen from bone and dentin have frequently been used for dietary reconstruction, but this method is limited by protein preservation. Isotopes of the trace element zinc (Zn) in bioapatite constitute a promising proxy to infer dietary information from extant and extinct vertebrates. The66Zn/64Zn ratio (expressed as δ66Zn value) shows an enrichment of the heavy isotope in mammals along each trophic step. However, preservation of diet-related δ66Zn values in fossil teeth has not been assessed yet. Here, we analyzed enamel of fossil teeth from the Late Pleistocene (38.4–13.5 ka) mammalian assemblage of the Tam Hay Marklot (THM) cave in northeastern Laos, to reconstruct the food web and assess the preservation of original δ66Zn values. Distinct enamel δ66Zn values of the fossil taxa (δ66Zncarnivore< δ66Znomnivore< δ66Znherbivore) according to their expected feeding habits were observed, with a trophic carnivore-herbivore spacing of +0.60‰ and omnivores having intermediate values. Zn and trace element concentration profiles similar to those of modern teeth also indicate minimal impact of diagenesis on the enamel. While further work is needed to explore preservation for settings with different taphonomic conditions, the diet-related δ66Zn values in fossil enamel from THM cave suggest an excellent long-term preservation potential, even under tropical conditions that are well known to be adverse for collagen preservation. Zinc isotopes could thus provide a new tool to assess the diet of fossil hominins and associated fauna, as well as trophic relationships in past food webs.
Uncertainties surround the timing of modern human emergence and occupation in East and Southeast Asia. Although genetic and archeological data indicate a rapid migration out of Africa and into Southeast Asia by at least 60 ka, mainland Southeast Asia is notable for its absence of fossil evidence for early modern human occupation. Here we report on a modern human cranium from Tam Pa Ling, Laos, which was recovered from a secure stratigraphic context. Radiocarbon and luminescence dating of the surrounding sediments provide a minimum age of 51–46 ka, and direct U-dating of the bone indicates a maximum age of ∼63 ka. The cranium has a derived modern human morphology in features of the frontal, occipital, maxillae, and dentition. It is also differentiated from western Eurasian archaic humans in aspects of its temporal, occipital, and dental morphology. In the context of an increasingly documented archaic–modern morphological mosaic among the earliest modern humans in western Eurasia, Tam Pa Ling establishes a definitively modern population in Southeast Asia at ∼50 ka cal BP. As such, it provides the earliest skeletal evidence for fully modern humans in mainland Southeast Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.