Background-The mechanism of pulmonary artery smooth muscle cell (PA-SMC) hyperplasia in idiopathic pulmonary artery hypertension (iPH) may involve both an inherent characteristic of PA-SMCs and abnormal control by external stimuli. We investigated the role of pulmonary microvascular endothelial cells (P-ECs) in controlling PA-SMC growth. Methods and Results-Serum-free medium of quiescent P-ECs elicited marked PA-SMC proliferation, and this effect was greater with P-ECs from patients with iPH than from control subjects and greater with PA-SMCs from these patients than from control subjects. Fluoxetine, which inhibits serotonin-induced mitogenesis by blocking the serotonin transporter, and p-chlorophenylalanine, which inhibits serotonin synthesis by blocking tryptophan hydroxylase (TPH), caused a similar 60% reduction in the growth-promoting effect of P-EC media, whereas endothelin receptor blockers had no effect. Assays of TPH activity in P-EC medium based on p-chlorophenylalanine-sensitive 5-hydroxytryptophan accumulation or serotonin determination indicated serotonin synthesis by P-ECs and an increase in this TPH-dependent process in iPH. Expression of the tph1 gene encoding the peripheral form of the TPH enzyme was increased in lungs and P-ECs from patients with iPH. Lung TPH1 immunostaining was confined to the pulmonary vessel intima. Conclusions-P-ECs produce paracrine factors governing PA-SMC growth. Serotonin, the main P-EC-derived growth factor, is overproduced in iPH and contributes to PA-SMC hyperplasia.
Abstract-One intrinsic abnormality of pulmonary artery smooth muscle cells (PA-SMCs) in human idiopathic pulmonary hypertension (iPH) is an exaggerated proliferative response to internalized serotonin (5-HT) caused by increased expression of the 5-HT transporter (5-HTT). To investigate whether 5-HTT overexpression in PA-SMCs is sufficient to produce PH, we generated transgenic mice overexpressing 5-HTT under the control of the SM22 promoter. Studies in SM22-LacZ ϩ mice showed that the transgene was expressed predominantly in SMCs of pulmonary and systemic vessels. Compared with wild-type mice, SM22-5-HTT ϩ mice exhibited a 3-to 4-fold increase in lung 5-HTT mRNA and protein, together with increased lung 5-HT uptake activity, but no changes in platelet 5-HTT activity or blood 5-HT levels. At 8 weeks of age, SM22-5-HTT ϩ mice exhibited PH, with marked increases in right ventricular systolic pressure (RVSP), right ventricle/left ventricleϩseptum ratio, and muscularization of distal pulmonary vessels, but no changes in systemic arterial pressure. PH worsened with age. Except a marked decrease in Kv channels, no changes in the lung expression of mediators of pulmonary vascular remodeling were observed in SM22-5-HTT ϩ mice. Compared with wild-type mice, SM22-5-HTT ϩ mice showed depressed hypoxic pulmonary vasoconstriction contrasting with greater severity of hypoxia-or monocrotaline-induced PH. These results show that increased 5-HTT expression in PA-SMCs, to a level close to that found in human iPH, lead to PH in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.