␣-Actinin is an abundant actin-bundling and adhesion protein that directly links actin filaments to integrin receptors. Previously, in platelet-derived growth factortreated fibroblasts, we demonstrated that phosphoinositides bind to ␣-actinin, regulating its localization (Greenwood, J. A., Theibert, A. B., Prestwich, G. D., and Murphy-Ullrich, J. E. (2000) J. Cell Biol. 150, 627-642). In this study, phosphoinositide binding and regulation of ␣-actinin function is further characterized. Phosphoinositide binding specificity, determined using a protein-lipid overlay procedure, suggests that ␣-actinin interacts with phosphates on the 4th and 5th position of the inositol head group. Binding assays and mutational analyses demonstrate that phosphoinositides bind to the calponin homology domain 2 of ␣-actinin. Phosphoinositide binding inhibited the bundling activity of ␣-actinin by blocking the interaction of the actin-binding domain with actin filaments. Consistent with these results, excessive bundling of actin filaments was observed in fibroblasts expressing an ␣-actinin mutant with decreased phosphoinositide affinity. We conclude that the interaction of ␣-actinin with phosphoinositides regulates actin stress fibers in the cell by controlling the extent to which microfilaments are bundled.
Alpha-actinin is a cell-adhesion and cytoskeletal protein that bundles actin microfilaments and links these filaments directly to integrin-adhesion receptors. Phosphoinositides bind to and regulate the interaction of a-actinin with actin filaments and integrin receptors. In the present study, we demonstrate that PtdIns(3,4,5)P3 inhibits and disrupts a-actinin-bundling activity, whereas PtdIns(4,5)P2 can only inhibit activity. In addition, a protease-sensitivity assay was developed to examine the flexibility of the linker region between the actin-binding domain and the spectrin repeats of a-actinin. Both phosphoinositides influenced the extent of proteolysis and the cleavage sites. PtdIns(4,5)P2 binding decreased the proteolysis of a-actinin, suggesting a role in stabilizing the structure of the protein. In contrast, PtdIns(3,4,5)P3 binding enhanced a-actinin proteolysis, indicating an increase in the flexibility of the protein. Furthermore, phosphoinositide binding influenced the proteolysis of the N- and C-terminal domains of a-actinin, indicating regulation of structure within both domains. These results support the hypothesis that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 differentially regulate a-actinin function by modulating the structure and flexibility of the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.