Land use is known to be one of the major factors driving soil microbial and physico‐chemical properties. Understanding its long‐term effect remains a major challenge in assessing current soil functioning. Here, soil microbial and physico‐chemical properties of recent and very recent forests (forests developed in 1958 vs. after 1958) were compared with those of ancient forests (present in 1860 and 1958) to assess the effect of Land Use Legacy (LUL). LUL effects were further analysed depending on contrasting (i) climate conditions (sub‐humid vs. humid Mediterranean climates) and (ii) seasons (winter and summer), to examine whether LUL modified microbial responses to different spatio‐temporal climate conditions. Microbial indicators (lignocellulolytic activities, basal respiration, and microbial biomass) and physico‐chemical properties (C and N contents, mineralogical analyses, pH and conductivity) were assessed. A strong effect of past agricultural practice (terrace cultivation) was observed in soils from very recent forests: reduced microbial biomass and activities as well as number of Quercus pubescens stems together with increased phosphorous content and pH. Interestingly, LUL effect did not affect microbial and physico‐chemical responses to seasonal contrasts (winter vs. summer). Microbial response to LUL was not influenced by climate while climate modified LUL effects on some physico‐chemical properties (CaCO3, Corg, and K content). Moreover, soil recovered “pristine” physico‐chemical and microbial functional properties after at least 60 years of reforestation.
This article applies the tools of bibliometric analyses to explore the evolution and strategic orientation of research focusing on the temporal dynamics of land use, which can be considered as an important proxy to assess soil vulnerability. With 1416 papers published in 417 different journals, the investigation showed a growing interest in the subject during the period ranging from 2001 to 2020. The main countries working on that topic are USA, China and certain countries of the European Union with a worldwide collaboration regarding co-authors. A cluster analysis of the keywords generated 6 main themes of research, each focusing on different issues and approaches i.e greenhouse gas (GHG) emissions, soil nutrients, climate change, erosion risk, human disturbances as well as resilience of soil functioning. Finally, it appears that the effect of land use legacy is poorly considered in the context of climate change, which could represent a future line of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.