Defects in apoptosis have been implicated in chemoresistance of colon cancer cells. We report here the ability to resist to 5-fluorouracil-induced apoptosis of 8 colon cancer cell lines differing in p53 and bax status: p53 ؊/0 bax ؉/؉ for TC7, SW480, HT-29; p53 ؉/؉ bax ؊/؊ for LS174T, LoVo; p53 ؉/؉ bax ؉/؊ for HCT116; p53 ؉/؉ or p53 ؉/0 bax ؉/؉ for LS513 or HCT-EB, respectively. To approximate to the in vivo therapy, the cell lines were exposed to a long-term treatment of 5-FU. The analysis of proteins implicated in the apoptotic pathway has shown that the independent analysis of p53 or bax status was not sufficient to predict the extent of drug-resistance of all cell lines. In p53 ؉/؉ cell lines but not in p53 ؊/0 cell lines, a low level of the pro-apoptotic Bax protein was correlated with a greater resistance of cells to 5-FU. In addition, we found that high levels of anti-apoptotic Bcl-2 and Bcl-x L proteins combined with a low level of Bax were correlated to high 5-FU resistance of wild-type p53 cell lines. The same correlation was obtained for 2 out of 3 mutated p53 cell lines. In conclusion, the relative levels of Bcl-2, Bcl-x L and Bax may altogether contribute to determine the resistance of a majority of colon tumor cells to long-term 5-FU treatment, whatever their p53 status.
Anoikis, i.e. apoptosis induced by detachment from the extracellular matrix, is thought to be involved in the shedding of enterocytes at the tip of intestinal villi. Mechanisms controlling enterocyte survival are poorly understood. We investigated the role of E-cadherin, a key protein of cell-cell adhesion, in the control of anoikis of normal intestinal epithelial cells, by detaching murine villus epithelial cells from the underlying basement membrane while preserving cell-cell interactions. We show that upon the loss of anchorage, normal enterocytes execute a program of apoptosis within minutes, via a Bcl-2-regulated and caspase-9-dependent pathway. E-cadherin is lost early from cell-cell contacts. This process precedes the execution phase of detachment-induced apoptosis as it is only weakly modulated by Bcl-2 overexpression or caspase inhibition. E-cadherin loss, however, is efficiently prevented by lysosome and proteasome inhibitors. We also found that a blocking anti-E-cadherin antibody increases the rate of anoikis, whereas the activation of E-cadherin using Ecadherin-Fc chimera proteins reduces anoikis. In conclusion, our results stress the striking sensitivity of normal enterocytes to the loss of anchorage and the contribution of E-cadherin to the control of their survival/apoptosis balance. They open new perspectives on the key role of this protein, which is dysregulated in the intestinal epithelium in both inflammatory bowel disease and cancer.
BackgroundThe microenvironment plays a major role in the onset and progression of metastasis. Epithelial ovarian cancer (EOC) tends to metastasize to the peritoneal cavity where interactions within the microenvironment might lead to chemoresistance. Mesothelial cells are important actors of the peritoneal homeostasis; we determined their role in the acquisition of chemoresistance of ovarian tumours.Methodology/Principal FindingsWe isolated an original type of stromal cells, referred to as “Hospicells” from ascitis of patients with ovarian carcinosis using limiting dilution. We studied their ability to confer chemoresistance through heterocellular interactions. These stromal cells displayed a new phenotype with positive immunostaining for CD9, CD10, CD29, CD146, CD166 and Multi drug resistance protein. They preferentially interacted with epithelial ovarian cancer cells. This interaction induced chemoresistance to platin and taxans with the implication of multi-drug resistance proteins. This contact enabled EOC cells to capture patches of the Hospicells membrane through oncologic trogocytosis, therefore acquiring their functional P-gp proteins and thus developing chemoresistance. Presence of Hospicells on ovarian cancer tissue micro-array from patients with neo-adjuvant chemotherapy was also significantly associated to chemoresistance.Conclusions/SignificanceThis is the first report of trogocytosis occurring between a cancer cell and an original type of stromal cell. This interaction induced autonomous acquisition of chemoresistance. The presence of stromal cells within patient's tumour might be predictive of chemoresistance. The specific interaction between cancer cells and stromal cells might be targeted during chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.