We consider an infinite particle chain whose dynamics are governed by the following system of differential equations: where qn(t) is the displacement of the nth particle at time t along the chain axis and denotes differentiation with respect to time. We assume that all particles have unit mass and that the interaction potential V between adjacent particles is a convex C∞ function. For this system, we prove the existence of C∞, time‐periodic, traveling‐wave solutions of the form qn(t) = q(wt kn + where q is a periodic function q(z) = q(z+1) (the period is normalized to equal 1), ω and k are, respectively, the frequency and the wave number, is the mean particle spacing, and can be chosen to be an arbitrary parameter. We present two proofs, one based on a variational principle and the other on topological methods, in particular degree theory. For small‐amplitude waves, based on perturbation techniques, we describe the form of the traveling waves, and we derive the weakly nonlinear dispersion relation. For the fully nonlinear case, when the amplitude of the waves is high, we use numerical methods to compute the traveling‐wave solution and the non‐linear dispersion relation. We finally apply Whitham's method of averaged Lagrangian to derive the modulation equations for the wave parameters α, β, k, and ω. © 1999 John Wiley & Sons, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.